Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface

Welcome to DSpace BU Repository

Welcome to the Bahria University DSpace digital repository. DSpace is a digital service that collects, preserves, and distributes digital material. Repositories are important tools for preserving an organization's legacy; they facilitate digital preservation and scholarly communication.

Show simple item record

dc.contributor.author Feroz Ahmed Soomro
dc.contributor.author Rizwan-ul-Haq
dc.contributor.author Z.H. Khan
dc.contributor.author Qiang Zhang
dc.date.accessioned 2018-11-12T12:11:44Z
dc.date.available 2018-11-12T12:11:44Z
dc.date.issued 2017
dc.identifier.uri http://hdl.handle.net/123456789/7692
dc.description.abstract Main theme of the article is to examine the entropy generation analysis for the magnetohydrodynamic mixed convection flow of water functionalized carbon nanotubes along an inclined stretching surface. Thermophysical properties of both particles and working fluid are incorporated in the system of governing partial differential equations. Rehabilitation of nonlinear system of equations is obtained via similarity transformations. Moreover, solutions of these equations are further utilized to determine the volumetric entropy and characteristic entropy generation. Solutions of governing boundary layer equations are obtained numerically using the finite difference method. Effects of two types of carbon nanotubes, namely, single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) with water as base fluid have been analyzed over the physical quantities of interest, namely, surface skin friction, heat transfer rate and entropy generation coefficients. Influential results of velocities, temperature, entropy generation and isotherms are plotted against the emerging parameter, namely, nanoparticle fraction 0 ≤ φ ≤ 0.2, thermal convective parameter 0 ≤ λ ≤ 5, Hartmann number 0 ≤ M ≤ 2, suction/injection parameter −1 ≤ S ≤ 1, and Eckert number 0 ≤ Ec ≤ 2. It is finally concluded that skin friction increases due to the increase in the magnetic parameter, suction/injection and nanoparticle volume fraction, whereas the Nusselt number shows an increasing trend due to the increase in the suction parameter, mixed convection parameter and nanoparticle volume fraction. Similarly, entropy generation shows an opposite behavior for the Hartmann number and mixed convection parameter for both single-wall and multi-wall carbon nanotubes. en_US
dc.language.iso en en_US
dc.publisher Bahria University Islamabad Campus en_US
dc.relation.ispartofseries ;DOI 10.1140/epjp/i2017-11667-5
dc.subject Department of Electrical Engineering en_US
dc.title Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account