Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects

Welcome to DSpace BU Repository

Welcome to the Bahria University DSpace digital repository. DSpace is a digital service that collects, preserves, and distributes digital material. Repositories are important tools for preserving an organization's legacy; they facilitate digital preservation and scholarly communication.

Show simple item record

dc.contributor.author Irfan Rashid
dc.contributor.author Rizwan Ul Haq
dc.contributor.author Qasem M. Al-Mdallal
dc.date.accessioned 2018-11-08T04:39:22Z
dc.date.available 2018-11-08T04:39:22Z
dc.date.issued 2017
dc.identifier.uri http://hdl.handle.net/123456789/7654
dc.description.abstract This study deals the simultaneous effects of inclined magnetic field and prescribed surface temperature (PST) on boundary layer flow of nanofluid over a stretching sheet. In order to make this mechanism more feasible, we have further considered the velocity slip and thermal radiation effects. Moreover, this perusal is made to consider the two kinds of nanofluid namely: -water and -water. Inclined magnetic field is utilized to accompanying an aligned angle that varies from 0 to . The exact solutions are acquired from the transformed non-dimensional momentum and energy equations in the form of confluent hypergeometric function. Lorentz forces and aligned magnetic field depicts the significant effects on nanofluid. We found that, due to the increase in the aligned angle provides the enhancement in local skin friction coefficient and a reduction in the local Nusselt number. The combined impacts of inclined magnetic field with other emerging parameters such as velocity slip, thermal radiation and nanoparticles volume fraction on velocity, temperature, local Nusselt number and skin friction coefficient are examined. Flow behavior of nanofluid is also determined via stream lines pattern. en_US
dc.language.iso en en_US
dc.publisher Bahria University Islamabad Campus en_US
dc.relation.ispartofseries ;dx.doi.org/10.1016/j.physe.2017.01.029
dc.subject Department of Electrical Engineering en_US
dc.title Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account