Welcome to the Bahria University DSpace digital repository. DSpace is a digital service that collects, preserves, and distributes digital material. Repositories are important tools for preserving an organization's legacy; they facilitate digital preservation and scholarly communication.
dc.contributor.author | Dr Shehzad Khalid | |
dc.contributor.author | M. Usman Akram | |
dc.contributor.author | Anam Tariq | |
dc.contributor.author | M. Younus Javed | |
dc.contributor.author | Sarmad Abbas | |
dc.contributor.author | Ubaid Ullah Yasin | |
dc.date.accessioned | 2017-11-22T12:46:00Z | |
dc.date.available | 2017-11-22T12:46:00Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://hdl.handle.net/123456789/5054 | |
dc.description.abstract | Glaucoma is a chronic and irreversible neurodegenerative disease in which the neuro-retinal nerve that connects the eye to the brain (optic nerve) is progressively damaged and patients suffer from vision loss and blindness. The timely detection and treatment of glaucoma is very crucial to save patient’s vision. Computer aided diagnostic systems are used for automated detection of glaucoma that calculate cup to disc ratio from colored retinal images. In this article, we present a novel method for early and accurate detection of glaucoma. The proposed system consists of preprocessing, optic disc segmentation, extraction of features from optic disc region of interest and classification for detection of glaucoma. The main novelty of the proposed method lies in the formation of a feature vector which consists of spatial and spectral features along with cup to disc ratio, rim to disc ratio and modeling of a novel mediods based classier for accurate detection of glaucoma. The performance of the proposed system is tested using publicly available fundus image databases along with one locally gathered database. Experimental results using a variety of publicly available and local databases demonstrate the superiority of the proposed approach as compared to the competitors. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Bahria University Islamabad Campus | en_US |
dc.relation.ispartofseries | ;DOI 10.1007/s13246-015-0377-y | |
dc.subject | Department of Computer Engineering CE | en_US |
dc.title | Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques | en_US |
dc.type | Article | en_US |