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Abstract 

In digital photography pipelines, Denoising and Demosaicking are the most essential 

key stages. In literature, Convolutional neural networks-based Image demosaicking 

methods have exhibited tremendous achievement. Nonetheless, asmost systems are not 

sufficiently profound, there is still enough space for the enhancement in performance plus 

a main challenge that remains to be addressed is to guarantee the visual quality of 

reconstructed images particularly in the presence of noise corruption with efficient 

computation, Regardless huge progress made in the previous decade. For these 

challenges and motivated by new advances in deep residual networks, this thesis 

introduces a new Demosaicking and denoising conjunct strategy named MARN-

JDDusing deep adaptive residual learning on that framework train on an enormous bulk 

of images, in place of adopting custom adapt filters. Conceptually the propose framework 

has two stages, in first stage residual mosaic and noise image is generated through joint 

through deep adaptive residual learning and then in second stage residual image is 

subtracted from input image which complete de-noising and Demosaicking. Experimental 

results of the MARN-JDDdemonstrate that proposed model incredibly surpassmany 

state-of-the-art joint denoising and demosaicking approach on the base of both peak 

signal-to-noise ratio (PSNR) and structure similarity index metrics (SSIM). 

 

Key Words:Adaptive residual network, denoising, demosaicking, data driven methods, 

convolutional neural networks
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Chapter 1 

INTRODUCTION 
1.1 Problem Statement 

Denoising subsequently demosaicking is untraceable, due to demosaicking distorts the 

attribute of the noise in a complex and hardly computable pattern. To guarantee the visual 

quality of reconstructed images particularly in the presence of noise corruption with 

efficient computation perceptivity to color artifacts in spaces of no or weak spectral 

correlation. 

1.2 Motivation 

Network depth is of essential usefulness in neural network architectures, but deeper 

networks are moredifficult to train because of the notorious vanishing gradient problemas 

the gradient is back-propagated to earlier layers, repeated multiplication may make the 

gradient infinitively small until now deep residual networks have not been applying 

demosaicking and denoising.On applying deep learning approaches on denoising or 

demosaicking process give positive results experiments performed. As in Deeplearning 

techniques deep residual network outperformed other deep learning techniques.Proposed 

technique uses deep residual network on joint denoising and demosaicking process. 

Despite being designed for the Bayer mosaic pattern, the methods proposed may be modi

fied to apply to other patterns of mosaic.  

1.3 Research Objectives 

Applying Demosaicking on images having weak spectral correlation always needs 

efforts. Huge number of conventional Demosaicking techniques needs repetitive work 

along with multi-level interpolations with huge processing cost. Due to these things these 

techniques are not providing mature solutions for real time processing. This thesis 

proposed framework which is apply denoising conjunct with Demosaicking with 
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refinement using deep adaptive residual learning. Train the model to maximize the 

regularity found in natural images on a wide range of ground truth data. 

 

1.4 Research Contribution 

Our contributions to conjunct Demosaicking-denoising will be deep Adaptive Residual 

network competent of manipulation a wide scope of a procedure and noise levels to 

create a training set full of challenging images.  

1.5 Thesis Organization 

The thesis comprises six chapters each describing the techniques used in thisresearch 

work. In the first chapter, a problem statement, introduction, motivation and,objective 

and scope of study were given. The second chapter comprises of background of 

denoising, demosaicking and neural network. The third chapter contains literature survey 

to understand the merits and demerits of existing joint demosaicking denoising methods. 

The fourth chapter deals with the proposed algorithm called Modified adaptive residual 

network joint demosaicking and denoising (MARN-JDD) thatde-mosaick andde-noise 

from an image. In chapter five, the proposed algorithm result is comparable in quality and 

time to the state-of-the-art algorithm.The concluding chapter describes the strengths and 

weaknesses of this work and future extension work. 
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Chapter 2 

BACKGROUND 
This portion provide brief background of demosaicking, denoising issuesalong with 

neural networks and their unit. 

2 Denoising 

De-noising is a digital image process utilized to removing unwanted noise to be able to 

bring the original image. There are several noise reduction algorithms in image 

processing.When picking an algorithm for noise removing, several factors needbe 

weighed:  

• the usable time and computer power: 

• a digital camera must use a tiny onboard CPU to reduce noise in a fraction of a 

second, while a computer's desktop has more time and power.  

• whether that is justifiable to sacrifice real detail if more noise can be eliminated 

(how competitively it is possible to determine where to go). 

There are three essentialtechniques to de-noise image – domain filtering, spatial filtering 

and wavelet thresholding. Every filtering method's objective are: 

• Effectively abolish uniform noise areas. 

 • Edges and similar image preservation. 

 • Maintain natural visual presence. 

2.1.1 Spatial Filtering 

Using spatial filters is a conventional approach of removing image data noise. Spatial 

filtering is the preferred method in cases where there is only noise of additives. It can also 

be grouped into two classifications: linear filters and non- linear filters 
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2.1.2 Linear Filters 

In scenarios where there is only additive noise, that's the preferred method. The ideal 

linear for Gaussian noise is a square error mean filter. It fits acute boundaries, destroys 

image lines and details of fine images. Wiener filter and Mean filter are involved. The 

ideal linear filter for Gaussian noise is a medium square error filter. Linear filters turn to 

demolish lines, blur sharp edges as well as other fine image details and fail in signal-

dependent noise. The wiener filtering process involves information on the original signal 

and noise spectrum and when the underlying signal then only works smoothly. The 

Wiener method pursues spatial smoothing and the window complication is controlled by 

its models. Johnstone and Donohoproposeda denoisingstrategy based on wavelets to 

resolve the Wiener filtering vulnerability. 

2.1.3 Mean filter 

It is a filter thatgive a smooth image by decreasing the adjacent pixel variations in 

intensity. The mean filter is actuallyan averaging filter. On each pixel the mask is 

enforced in the signal. Thus, each pixel component that falls under the mask is average 

filter for making a single pixel. The main drawback is that the edge preservation criteria 

in the medium filter are low. 

2.1.4 Wiener Filter 

It is a filter that approaches the filtering of noise statistically that has corrupted a signal. 

This filter can acquire the favored frequency response. The Wiener filter is approached 

from another angleto carry out the filtering process,the spectral attributes of the original 

signal and the noise must be known, to achieve the benchmark, the LTI filter with output 

as near to the real signal as possible. 

 

2.1.5 Non-Linear Filters 

Nonlinear filter is the preferred strategy in positionswhere there is a multiplying and 

functional noise. Noise is eliminated without a non - linear filter explicitly identifying it. 

Spatial filters use a low-pass filter in pixel groups, which implies a higher frequency 
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spectrum region. Spatial filters generally eliminate noise to an acceptable degree but at 

the expense of blurred imagesthat make the edges in images invisible. To overcome this 

disadvantage in latterly. A number of nonlinear median filters have been developed, such 

as weighted median, relaxed median and conditioned rank selection, noise can be 

evacuated without exclusively identifying with non-linear filters. The median for the 

neighborhood pixels determines in this case, the output pixel value. Spatial filters on 

pixel groups use low- pass filtering to state the noise is in the region of the higher 

frequency spectrum.  

 

2.1.6 Median Filter 

Median filters are categorized as non - linear filters.First find the median value around 

the window and replace the median pixel value with each entry in the window is called 

Median filtering.If a strange number of entries are in the window, it is easy to define the 

median:After all entries are sorted numerically in the window, it is only the middle value. 

But there is more than one possible median for even a number of entries. It's a sturdy 

filter. Media filters used to provide smoothness in the processing of images and time 

series. Median filtering has the advantage that it is far less unstable than the average to 

extreme values (known as outliers). The outliers can therefore be removed without 

lowering the image's sharpness. 

 

2.1.7 Transform Domain Filtering 

It can be separated as per the core functions selected. They primarily categorized non- 

data adaptive transformation and data adaptive transformation 

2.1.8 Non- Data Adaptive Transform 

a. Spatial Frequency Filtering 

Spatial Frequency Filtering assigns rapid low - pass filters to Fourier Transform. By 

selecting break frequency and adjusting a frequency domain filter and If the noise 

itemsare decorated with a convenient sign, noise is eliminated. The essentialdrawback of 

Fast Fourier Transformation (FFT) is that the edge information is not located in time or 

 



 

20 

space and is distributed over frequencies due to the FFT base function, that implies that 

time information is lost and edge streaming results from low- pass filtering. However, 

Wavelet Transform 's localized nature in space and timeis an especially effective way to 

de-noise images when it is important to preserve the edges in the scene. 

 

b. Wavelet Domain Filtering 

Wavelet domain is favored in working as the Discrete Wavelet Transformation (DWT) 

concentrates the signal energy in limited coefficients, so that the noisy DWT image 

comprises of a limited number of a high signal- to- noise ratio(SNR)coefficients, whereas 

alow SNRof relatively large number of coefficients, the image is reconstructed using the 

reverse DWT after the low SNR coefficients (i.e. noisy coefficients) are removed. In 

consequence, from the observations, noise is filteredor eliminated. Wavelet methods have 

a major advantage in providing frequency localization and time at the same time. In 

addition, Wavelet methods define these signals far more efficiently than the original 

domain or transform them with global elementslike the Fourier transformation. 

3 Demosaicking 

The demosaicking is a process in digital image processing that produce complete image 

from the incomplete or limited data which produces from the image sensor superimpose 

alongside an array of color filters. To obtain three full-channel color images directly from 

complementary sensors for metal- oxide- semiconductors (CMOS) or 3 charge-coupled 

device (CCD)or both can be used, this way, however, is expensive and still requires 

spectral band passes, sometimes in the kind of beam splitters alongside half transparent 

mirrors. A CFA for capturing one color component per pixel in front of the sensor and 

interpolating missing color components is a more cost-effective solution, market also use 

the most digital camera. To separate the color information CFAs are used, since light 

intensity only detect by the typical photo sensor without information about wavelength. 

In fix patterns the CFA consists of spectrally selective filter arranged. CFA images or 

mosaic images are sparsely sampled color channels collected from the color filter array. 
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3.1.1 Color filter array patterns 

The Bayer pattern [49] is the best widely used CFA [50]. Image artifacts cause by 

Demosaicking CFA’s. aliasing is a common reason for image artifacts, it happens when 

the signal is sampled at the highest frequency in the signal at less than twice as high. Low 

sampling of images causes aliasing in the spatial domain. 

It occurs when a repetitive pattern of high spatial frequency is sampled at low frequency, 

which is a large-scale interference pattern known as Moiré patterns. An unrealistic maze-

like pattern color artifact or pixels arranged; the interference appears as repetitive 

patterns. In figure 2.1,Example of Moiré artefacts can be seen. The false color artifacts 

can also cause by Demosaicking.  Across the edge the interpolation might have been 

done, these often manifest themselves along edges. The commonly occurring along edges 

is zippering artifacts is another artifact. The demosaicking algorithm averages pixel 

values over an edge when zippering is prevalent, in a zipper pattern become blurred the 

edges. In figure 2.2, a zippering examplecan be seen. 

 

Figure 0.1 artifacts in the tight diagonal pattern of a shirt's fabric. 
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Figure 0.2Zipper artifact due to RF-feedthrough 
A CFA pattern measuring the green image on a grid with half the image resolution and 

red and blue images on rectangular grids with a quarter of the image resolution is known 

as a Bayer pattern, see figure 2.3.At a higher samplingrate,the green channelis measured. 

The human visual system is more sensitive to thegreen wavelength.  In most color filter 

arrays above the Bayer pattern this property is usedthe previous demosaicking work 

covers only techniques for the Bayer pattern, it is common to used. The RGBW Bayer 

pattern of Sony and the Clarity+ pattern of Aptina are two more wide- spread color filter 

arrays.The same structure as the Bayer pattern is replaced with clear filters that make the 

pixel 's register light of all wavelengths except for any other green filteris known as Sony 

RGBW pattern. In rectangular grids this provides a pattern with all four different kinds of 

filters.Except for all green filters, the same structure as the Bayer pattern is replaced by 

clear filtersis known as Aptina Clarity+ pattern. 

3.1.2 Color models 

Frequently, By the way of different color coordinate systems colors are described and 

organized. The most used and popular color model is the RGB color model in which the 

color is expressed as an additive blend of the three primary colors red, green and 

blue.The YCbCr model is another widely used representation. They are decorrelated and 

detached into a channel of luminance and two channels of chrominance.Linear blend of 
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red, green and blue channels is build up by the luminance channel and the weighted 

variation between the luminance channel and the red jointly blue channel as referred as 

the chrominance channels. 

 

Figure 0.3The Bayer CFA. 

3.1.3 Demosaicking methods 

It is generally completed over interpolating the missing color channel information is 

Demosaicking. The following portion defineimportant demosaicking in spatial 

dimensional performing techniques. 

3.1.4 Bilinear interpolation 

The least complex bilinear (or straight) technique for interpolation essentially assess the 

pixel esteem as the mean of each shade of the nearest pixels, for example Four qualities 

are utilized to assess the green pixel estimation of a non-green pixel, while a red or blue 

pixel esteem just approaches two nearby pixels in the right shading.This straightforward 

method does not utilize the relationship between various shading layers and consequently 

creates obscured pictures inadequately.The procedure can be reached out to incorporate 

more pixels, including the pixel value, in the present pixel. A case of this is a Malvar et al 

method. [51] in which 9 pixels are utilized to assess the green channel and 11 to gauge 

the red and blue channels. This improves the connection between's the shading channels. 

It improves the connection of shading channels. So as to calculate the pixel value, a 

weighted aggregate of the comparing pixels is determined by weight. 

A mosaic image is green with twice the number of pixels (and also more details) as the 

blue or red portion. One prevalent way is interjecting the green (or luminance) channel 

first and after that measure the red and blue (or chrominance) channels utilizing the 

 

https://www.thesaurus.com/browse/jointly
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totally added green channel[50]. The reason is to prevent aliases which occur less likely 

in the green channel because they encode as many information twice. Li et al., as defined. 

[50] An underlying edge recognition calculation is frequently used to insert edges to wipe 

out zippering effects along the edges. The chrominance channel is added by going up 

against a consistent tone and evaluating the contrast between the blue and green channels 

and the red and green channels. The pixel green channel esteems are deducted and the 

Red and Blue channels are assessed.The downside of this procedure is commonly that the 

Green channel interpolation engenders mistakes into the red and blue channels that can at 

last make major demosaicking picture blunders. Another procedure is to insert the 

luminance channel where the missing information is added by heuristic edge-direct 

principles in the green channel The course of the neighborhood edge is evaluated from 

the accessible information on the green, red or blue channel and the inclinations of the 

second request of the chromium channels can be utilized as a rectification. Nearby 

covariance can be utilized to modify interpolation, assessed based on geometric duality. 

3.1.5 Iterative demosaicking 

It has a basicflaw in the propagation of errors where any errors that occur inevitably 

during the interpolation of the luminance channel spread to the chromium channels 

Sequential demonstration. This can be solved by iterative redevelopment. According to 

the rules of color ratio are refined green, red and blue channel. 

3.1.6 Machine learning methods 

In the field of image processing When machine learning methods obtain additional 

ground, a number of various machine learning techniques have been attempted. Neural 

networks with convolutionary and multi- layered kernels proved helpful and may be used 

both for demosaicking and denoising when properly designed Super resolution [2] is 

anonlinear method of increasing the resolution by interpolating new values between 

existing pixels nonlinearly. In order to find the missing values, it is possible to channel 

this approach to a mosaic image. Generative opposing networks [33] are asuccessful 

method of machine learning for tasks with super resolution. The generative adversarial 
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network is a network structure with two parallel networks, one generative network and 

one discriminative network, which are together prepared to improve the errands required. 

3.1.7 Adaptive color plane interpolation 

A demosaicking method using the adaptive color interpolation plane was introduced in 

1996 by Hamilton and Adams [49]. A sequential approach to demosaicking split the 

image into RGB color channels is used. The green channel was first interpolated, and the 

red and blue channels interpolated. Interpolation is carried out by an edge detection 

approach that allows interpolations to be carried out on and not across borders. 

4 Neural networks 

It is influenced by the way neurons function in the brain, which only signal when specific 

conditions, i.e. are met. In order to produce an output, a combined neuron inputmust 

exceed certain threshold value (bias). In 1943, McCulloch and Pitts [52] proposed a 

"threshold logic" 

𝑦𝑦 =  𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧1, 𝑖𝑖𝑖𝑖�𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖   

𝑁𝑁

𝑖𝑖=1

≥ 𝑏𝑏

0, 𝑖𝑖𝑖𝑖�𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖   

𝑁𝑁

𝑖𝑖=1

< 𝑏𝑏

� (Error!  Bookmark not defined. ) 

Wherewi is a weight, xi is the value for the input, and b is the values for the threshold. 

Y= 1 is activated for the neuron. Neural networks are ideal for several computer 

functions like classification and clustering of neural networks and the use of neural 

networks for various types of mathematicaland computer operations has increased 

because they have useful features. 

4.1.1 Hidden layers 

A neural net is comprised of neuron layers that connect a layer input to the preceding 

layer output. Input laying, one or morelayers hidden comprise the simplest neural grid 

and output layer. The covered layers contain learning weights and biases optimized by 

back propagation, which is a two- phase cycle propagation to update neural network 

weights. The weights determine the amount of each neuron input and the bias defines the 

 



 

26 

value of the threshold. Hidden layers can be completely connected, and all input variables 

can be connected to all output. They may also include convolutionary layers or local 

layers 

4.1.2 Activation layers 

Hidden layers frequently have a non-linear layer, for example, a sigmoid or linear 

rectifier (ReLU) work. The system enactment work makes the system nonlinear and 

progressively mind boggling. On the off chance that the initiation capacities were 

excluded, it is conceivable to diminish the system to linear regression. 

In the equation 6 it is shown that the easiest step function activation feature. The function 

ReLU is defined as 

𝑓𝑓(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚(0; 𝑥𝑥)(2) 

d is presently the most frequently used neural network activation function [43]. A number 

of recent studies, including Krizhevskyet al. [53] exhibited that the ReLU work expands 

the neural system union contrasted and the sigmoid capacity. The broken ReLU and 

parametric ReLU capacities are created. The flawed ReLU adds a little incline to the 

negative part and characterizes it as 

𝑓𝑓(𝑥𝑥) = �𝑥𝑥,         𝑖𝑖𝑖𝑖 𝑥𝑥 > 0
𝑎𝑎𝑎𝑎,       𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0

� (3) 

Where a constant which is set to small value. The parameter ReLU is characterized 

similarly as a parameter can be prepared. The sigmoid capacity is characterized as a 

condition The sigmoid capacity has an esteem district of [ 0;1] that gives it a mean 

esteem that isn't zero. The tanh work is like and characterized as the sigmoid capacity. 

𝑓𝑓(𝑥𝑥) =  
1

1 +  𝑒𝑒−𝑥𝑥
(4) 

The tanh function has an [ -1;1] esteem area and a normal estimation of zero. The 

functional forms sigmoid, tanh and ReLU are shown in table 4. 
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Name Plot Equation 

Identity 

 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥 

Binary Step 

 

𝑓𝑓(𝑥𝑥) = � 0,         𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 < 0
1,       𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ≥ 0

� 

Logistic  

 

𝑓𝑓(𝑥𝑥) =∝ (𝑥𝑥) =  
1

1 +  𝑒𝑒−𝑥𝑥
 

 

TanH 

 

𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) =  
( 𝑒𝑒𝑥𝑥 −  𝑒𝑒−𝑥𝑥  )
( 𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥  )

 

ArcTan 

 

𝑓𝑓(𝑥𝑥) = tan−1(𝑥𝑥) 

Rectified Linear 

Unit(ReLU) 
 

𝑓𝑓(𝑥𝑥) = �0,         𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 < 0
𝑥𝑥,        𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ≥ 0

� 

Leaky rectified 

linear unit 

(Leaky ReLU)  

𝑓𝑓(𝑥𝑥) = �0.01𝑥𝑥,        𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 < 0
𝑥𝑥,                 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ≥ 0

� 

Parametric 

Rectified Linear 
 

𝑓𝑓(𝑎𝑎, 𝑥𝑥) = �𝑎𝑎𝑎𝑎,         𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 < 0
𝑥𝑥,            𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ≥ 0

� 
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Table 1 Activation functions for deep learning 
 

4.1.3 Training 

In order to determine the net's ultimate weight and bias, it must be trained to produce as 

much output as feasible as a recognized image of ground truth, for example. The image to 

be reproduced by the network through demosaicking. This is achieved by an algorithm of 

optimization.The optimization algorithm in other words reduces the loss function. 

Quantify the difference amongst the ground truth and net result. The loss function 

gradient is calculated to determine the direction in which the optimization algorithm 

should update weights.Ideally, Iterates the process till the outcome converges.If the 

image produced is the same as the image of the ground truth and the training is iterated 

until the loss function produces a sufficiently low value, true convergence is difficult to 

achieve. 

4.1.4 Epoch 

An epoch is a way of measuring of where the entire training data is once passed through 

the neural network. A neural network requires training for several periods in order to 

achieve convergence with limited data. As Kapah et al. has done, fixed number can be set 

as number of time and also variable number can be used for this over iteration. [54], as 

training continues to meet certain termination criteria, as Gharbi et al. [2] have done. 

4.1.5 Regularization 

Neural networks can be over-fitted if the network does not perform well on real data but 

performs pretty good when it is train on training data. To avoid this effect, regularization 

of weights is general. It implies that larger weights are penalized and the process of 

trainingto find lower weight values is encouraged.A regularization technique can have 

defined as 

Unit(PReLU) 
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𝐸𝐸�(𝑤𝑤) = 𝐸𝐸(𝑤𝑤) +  𝜆𝜆 .
1
2
𝑤𝑤2(5) 

In the equation E shows the loss function, w shows the weight and l refers to the constant 

that is very small. While using in neural network theregularization is then used as weight 

decay. 

4.1.6 Dropout layers 

Another way to avoid the effect of overfitting is to apply a drop-off the layer to every 

layer. With a certain number of the neurons and zeros the drop-out layer interferes with 

this number. By this process the neurons are discharged and distributed randomly and 

changed for each and every training data batch. It can likewise be viewed as different 

systems with different neural associations that are sub-sampled and prepared in the 

meantime. All neurons are utilized to deliver a yield that accepts the diminished qualities 

as zero qualities into record. Dropout layers are not utilized during validation. 

4.1.7 Loss functions 

To quantify the convergence and the difference between the net output and the ground 

truth is known as loss function. Over the years, Numerous techniques have been 

proposed, both straightforward systems utilizing standard qualities and further developed 

methods utilizing results-based connection with ground truth. 

4.1.8 Norm based methods 

The L2 Loss function is a common loss function for evaluating neural networks. The 

method simply calculates the Euclidean norm square and can distinguish the result from 

the ground truth and can be described as 

 

𝐿𝐿2(𝑥𝑥, 𝑦𝑦) =  �(𝑦𝑦𝑖𝑖 −  𝑥𝑥𝑖𝑖)2(6)
𝑛𝑛

𝑖𝑖=0
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Chapter 3 

RELATED WORK 
Demosaicking and de-noising are the most important fundamental and critical stages in 

digital image pipelines. Demosaicking refer as procedure to rebuild an entire color image 

from partial color information created with an overlaid sensor image having a color 

filtration array in digital image method. De-noising is a digital image process utilized to 

removing unwanted noise to be able to bring the original image. According to 

assessment, the present information of color image (CI) is adulterated due to two-third 

and noise of CI data is inadequate. To achieve modularity, denoising and demosaicking 

techniques are managed in a successive way or independently. This direct leads to error 

accumulation because Demosaicking used the imitation of unreliable samples and 

denoising results get perturbed due to variable and non-linear per pixel interference 

launched by Demosaicking due to utilization of unreliable samples. It's been apperceived 

with time which exploiting the regularity of natural images is crucial to hoisting beneath 

guarantee. Interpolation predicated techniques such as for instance spline interpolation, 

bi-cubic interpolation, and bilinear interpolation, had been the first methods suggested to 

handle the demosaicking quandary. 

These techniques are able to calculate the missing color values however they also 

engender unwanted color artifacts including zippering, purple fringing, chromatic aliases, 

then blurring. Numerous approaches have been proposed [12] - [24] to cope with 

mendacious color artifacts and get high resolution images. Residual interpolation 

strategies suggested by Kiku et al. [19] [20] [21] [22] provide better quality images than 

straightforward interpolation-based methods exhibiting the possibility of recurring 

estimation for image demosaicking. 
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Machine Learning based demosaicking recently started to attract increasingly more 

interest in recent years. Early works (e.g., [25] and [26]) with an easy fully connect 

network just achieved success that is limited; eventually works depending on Support 

Vector Regression [27] or Markov Random Fields [28] were capable of attaining similar 

functionality to model based demosaicking. Most recently, the area of rich learning or 

even deep neural networks has progressed quickly triggering breakthroughs in both low-

level and high-level vision problems [29] - e.g., image recognition [30], [31], deal with 

recognition [32], image super resolution [33] as well as impression denoising [34]. By 

comparison, image demosaicking by serious learning has stayed a primarily unexplored 

territory with the exceptions of [35] and [36]. So, it's normal to leverage latest 

developments in deep learning on the area of image demosaicking for more 

improvement. Zhang and others [ 37] and w. Yang et al. [ 32] used network-based deep 

learning techniques to restore images in high-quality images. This motivated us using an 

architecture that relies on convolutionary network layers with residual image denoising 

and demosaicking estimates. 

Numerous strategies for Demosaicking and denoising techniques have been proposed 

within the literature. 

A joint strategy to Demosaicking and denoising proposed by Buades et al. 2009]. Heide 

et al. [2014] by enclosing a non-local all-natural image preceding into a boost approach. 

Be that as it can that their previous is still handmade and the mixture of boost. The 

dependency of nonlinear pounds for each one interpolant is on the inter channel color 

alterations for the corresponding direction, as a result of the divergence of inter channel 

color variations for every direction is indicative of the probability based on the place of 

an edge [10]. 

Gharbi et al. proposed a brand-newmethod to resolve the jointDenoising 

andDemosaicking using the convolutional neural network (CNN) images while reducing 

distortion in images like Moire and zippering. Proposed scheme has performed very well 

in flat images nevertheless its overall performance is decreased in tough cases on account 

of 2 issues that are important. First, tough events are unusual for weakened by the 

immensely more popular simple areas. Second, metrics like as PSNR or L2 don't 

recognize Demosaicking artifacts which are salient to people. 3 steps learning approach 

 



 

32 

are used by it. Firstly, criterion database of pictures is used by them and also teach the 

system with this data. Secondly mining the cold hard patches and create a dataset of 

challenging pictures. Finally, Retrain the device on the cold hard patches by retraining 

the device on tough patches, the functionality on the method increases. A deep neural 

network is train to demosaick challenging images with luminance artifact around small 

buildings, e.g. color Moire artifacts and zippering effect. The methodology appropriately 

gets a handle on the convoluted examples and yields contortion less outcomes. The 

breaking points of the methodology are that it controlled by distinguishing testing spots 

for use in preparing obviously, if ground truth pictures as of now contain ancient rarities 

like Moire, the system would have figured out how to incorporate curios in image [2]. 

Demosaicking uses a multilayer neural network Wang [8] proposed a 4 by 4 patch 

dependent multilayer neural network was used for image Demosaicking. In contrast with 

cutting edge Demosaicking algorithms the multilayer neural system oversees unexpected 

shading changes legitimately, be that as it may it springs up inadequate amid recovering 

colossal repeat designs. A theory was that using bigger patches would improve the 

system recuperate path for high repeat designs. 

Demosaicking making utilization of artificial neural systems Kapah et al. [9] early 

analyzed Demosaicking with the assistance of counterfeit neural systems. The perceptron, 

the backpropagation form, the selector displays together with the quadratic perceptron 

demonstrate had been set nearby each other. It was found that the perceptron was truly 

adept at Demosaicking exceptionally low recurrence territories and fizzled at high 

recurrence regions which have immersed hues. Contrariwise the backpropagation display 

was great at Demosaicking high recurrence regions and furthermore at improving shading 

think about despite the fact that in lower recurrence areas it neglected to recreate the best 

possible hues. The selector show was fit the bill to be able to pick once the perceptron 

and backpropagation demonstrate had been going being used to demosaick the region of 

an image. Thusly, high recurrence regions could be demosaicked making utilization of 

the backpropagation style and diminished recurrence areas were demosaicked making 

utilization of the perceptron. The last methodology which was inspected was the 

quadratic perceptron plan which preformed fantastic in each low and high recurrence 

district and furthermore played out the best among the analyzed techniques. 

 



 

33 

The suggested methods use 4 directional high-order interpolants of the missing color 

value determined in 4 different directions to maintain the edge in Demosaicking [ 5]. 

Each interpolant is then given non-linear weight. Each nonlinear mass is derived on the 

basis of the color differences between the channels, in order to increase the impact of the 

interpolant from a similar angle aspect, while reducing the effect of the interpolants on 

the exact opposite aspect of an advantage. This allows the suggested algorithm to 

improve the accuracy of interpolation in soft areas while minimizing color artifacts on the 

edges.  

To obtain a full color image a method is proposed [1] that linearly combines an 

extracted luminance image and RGB image who's passed by low pass filter. In order to 

denoise the luminance picture and minimal passed RGB image, this particular pattern 

modifies the non-local mean before combining these images. It assumes the R, B and G 

part of image have a similar look in a pure image. 

In order to prevail over issue within the multi spectral that the proposed method uses 

adaptive multispectral Demosaicking dependent on frequency domain analysis [6]. Color 

filter array interpolation or maybe 3 band Demosaicking could be the procedure to locate 

the missing color sample from RGB bands to reconstruct the whole image. though it 

resolved a difficult problem of multispectral Demosaicking, wherein every band is 

considerably under sampled as a result of the increment in the quantity of bands. It 

proposed an adaptive spectral correlation  
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Table 2Deep learning papers review
Paper Used for Dataset Network 

depth 

Kernel 

size 

Activation 

function 

Filters Optimization Initial 

weight 

strategies 

Deep Joint 

Demosaicking and 

Denoising [2] 

Joint 

denoising and 

demosaicking 

Imagenet, 

MirFlickr 

17 3*3 ReLU 64 SGD and 

Adam 

SGD 

COLOR IMAGE 

DEMOSAICKING 

VIA DEEP 

RESIDUAL 

LEARNING [36] 

Demosaicking Kodak and 

McMaster 

10 21*21 ReLU 64 gradient 

descent 

algorithm 

SGD 

Image 

Demosaicking and 

Blind Denoising 

[47] 

Joint 

Demosaicking 

and denoising 

Kodak and 

McMaster 

16 3*3 Relu Maas 

et al. 

(2013) 

activation 

64 n/a SGD 

Iterative Residual 

Network [46] 

Joint  

Demosaicking 

and 

Denoising 

McMaster, 

Kodak and 

MIT dataset 

5 5 × 5 PReLU 64 stochastic 

gradient 

descent 

algorithm 

SGD 

Joint Demosaicking 

and Super-

Resolution [45] 

Joint 

Demosaicking 

and Super 

Resolution 

RAISE 26 n/a PReLU 256 ADAM SGD 

Adaptive Residual 

Networks [37] 

Image 

Restoration 

Berkeley 

Segmentation 

Dataset 

BSD500 

8 blocks n/a PReLU 64 ADAM Xavier 

Initialization 
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DeepDemosaicking: 

[44] 

Demosaicking BSDS 500 

dataset, 

ARRI 

dataset, 

SuperTex136 

dataset, 

General-100 

7 5 × 5 Not 

specified 

 

64 n/a SGD 

Beyond a Gaussian 

Denoiser [34] 

denoising Berkeley 

segmentation 

dataset, 

CBM3D 

17,20 3*3 ReLU 64 SGD and 

Adam for 

comparison 

SGD 
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based Demosaicking that utilizes a novel along with anti-aliasing filter to lessen the 

interference. The proposed scheme incorporated an intra prediction program to make 

a far more precise reconstruction of the image as we encounter in Demosaicking and 

also denoising case, when a tough image will come and proposed algorithm doesn't 

work subsequently the algorithm learns from tough image and in future when the 

tough image is of that kind and then the proposed algorithm works very well. 

The purposed strategies try and boost reconstructed image quality by taking into 

consideration inter channel correlation via utilization of Demosaicking strategy. It's a 

multispectral Demosaicking algorithm in that the method uses a lot more spectrum of 

color of the image than the RGB picture. This method makes an attempt to lengthen 

Demosaicking process via color impact algorithm to think about inter channel 

correlation. The foundation of the Demosaicking algorithm is on Brauers Color 

Difference (BCD). By utilizing BCD throughout the mixture of goals as well as guide 

bands are interpolated uniformly [3]. 

As stated in [2], denoising and demosaicking will often be addressed as 2 separated 

issues as well as analyzed by diverse communities. Within training, raw CFA 

information are usually polluted by sensor interference [11], that could result in 

unwanted artifacts to come down with reconstructed images in case unattended. Ad-

hoc sequential methods concatenating two functions frequently fail: 1) denoising prior 

to demosaicking is tough because of unfamiliar racket qualities as well as aliasing 

created by the CFA; denoising right after demosaicking is difficult also simply 

because interpolating CFA would complicate the racket conduct within the spatial url 

(e.g., getting signal dependent). Thus, conjunct demosaicking as well as denoising 

(CDD) happens to be conceived a far more adequate method of trouble formula. Since 

each denoising and demosaicking are ill posed, a typical airier dependent image prior 

could be brought to facilitate the answer to CDD. Before as well as subsequent to 

demosaicking denoising applied. 
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Chapter 4 

 

PROPOSED MODIFIED ADAPTIVE 
RESIDUAL Model (MARCNN - DDJ) 
A. OVERVIEW 

In this section, author proposed a 2-step standard feed-forward network architecture 

MARCNN - DDJ to perform demosaicking and denoising with the help of proposed 

adaptive deep residual CNN model. In general, the training of a deep CNN model for 

a particular task comprises two steps: (i) design of network architecture and (ii) model 

learning from training data. For the design of network architecture, we adjust the 

VGG network [42] with customized adaptive residual block [37] to make it feasible 

for denoising and demosaicking of images and to determine the depth of the network 

used in state- of- the- art demosaicking and denoising techniques. Authoradopt the 

residual learning formula for model learning and incorporate it for fast training and 

improved demosaicking and denoising performance with batch normalization.In the 

following sections, we will elaborate implementation details including network 

architecture design, loss function, and training procedure. 

B. MODIFIED ADAPTIVE RESIDUAL UNIT(MARU) 

Modify theadaptive residual block [37], removing scaling factors, change original 

input vector to previous layer output vector and add batch normalization between 

convolutional and activation function i.e.PReLU[43]. 

The technique uses modified adaptive residual unit, as shown in Fig. 4, can be 

formulized as: 
𝑦𝑦 = 𝐹𝐹(𝑥𝑥,𝑊𝑊𝑊𝑊) + 𝑥𝑥 (7) 

Here 𝐹𝐹 = 𝑊𝑊2𝜎𝜎(𝑊𝑊1𝑥𝑥)  in which σ denotes PReLU, xl indicates the previous layer 

output vector, proposed technique use MARU as can be seen in Fig.4. 
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Figure 0.1Modified Adaptive residual unit (MARU). 
 

 
Figure 0.2The architecture of the proposed MARCNN-DDJ network. 

 
MARU block has three differences compared to the adaptive residual unit [ 3]. First, 

we add normalization of the batch between convolution and activation, i.e. PReLU. 

This is important to denoising and improve performance. Secondly, our shortcut 

connects the outputs of the previous layers to the current layer instead of the original 

input with the following stacked layers. As a problem, the useful input information 
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does not need to be reserved. Third, we remove α and β because this problem does not 

need to be scaled. 

C. NETWORK ARCHITECTURE DESIGN 

The input of proposed ADRCNN is a noisy observationy = x + v. As can be seen in 

Figure 4.2, our MARN consists of one 3×3convolutionary layer, one MARU, d-1 / 2 

De-nosier units, d-1 / 2 MARUs and one 3 convertible layers sequentially. The first 

3× 3 convolutionary layer is used to extract the features from the noisy mosaic images 

input. The extracted features will then be forwarded to the MARU. The extracted 

features are subsequently sent to the d-1/2 De-nosier units. The extracted features are 

subsequently sent to the d-1/2 MARUs. and the last 3× 3 convolutionarytranspose 

layer is then used to reconstruct noisy-free and demosaick image. Facts have shown 

that 3×3 layers of convolution [ 30] are sufficiently capable of extracting good 

features as long as the network is sufficiently deep. 

Table 3model architecture as a layer 
layer  filter(size) 

conv1  64(3×3) 

conv2 

64(3× 3) 

64(3× 3) 

. 

. 

64(3× 3) 

Conv3 

64(3 × 3) 

64(3× 3) 

. 

. 

64(3× 3) 

Con4 64(3× 3) 

 residual layer 

 

In accordance with the basis defined in [ 42], all layers of pooling are removed and 

the size of convolutionary filters is set to 3 × 3.Given the MARCNN - DDJ with depth 

20, there are four kind of block, shown in Fig. 5.  
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(i) Conv+PReLU: To extract the features of the input mosaic noisy images, the first 

convolutionary layer of 3×3 is used. For the first layer, 64 size 3×3× c filters are used 

to generate 64 feature maps, and for non-linearity, parametric rectified linear units 

(PReLU, max (0,·)) are used. Here c is the number of image channels, i.e. c= 1 for 

gray images and c= 3 for color images. 

(ii) Conv+BN + PReLU (DenoiserBlock): for layers 2 ∼ (D/2), 64 filters of size 

3×64×64 are used, and batch normalization is added between convolution and 

PReLU.and subtract residual from original image. 

(iii) Conv+PReLU+Conv+PReLU (MARU): for layers D/2∼ (D− 1), 64 filters of size 

3×64×64 are used. 

 (iv) ConvTranspose: last 3×3 convolutional layer works as reconstructing noisy free 

complete images. 

In many low-level vision applications, the yield image measurement should most 

often be the same as the original. This can lead to artifacts on the boundary. We pad 

zeros in particular to ensure that each feature map of the middle layers is 

indistinguishable from the original image. We find that no boundary artifacts result 

from the basic zero padding procedure. This great property is probably due to the 

MARCNN-DDJ's dominant capacity. 

D. LOSS FUNCTION 

We adopt MSE as the loss function to support the efficiency of the proposed model. 

To learn the end-to-end function F from incomplete and noisy images to its noisy free 

complete image counterparts, the weights represented by the shortcut kernels must be 

estimated.This is achieved by reducing the MSE between the network outputs and the 

original image. In particular, given the collection of n training image pairs xi, yi, 

where xi is incomplete and noisy images and yi is the noisy free full image version, 

we minimize the objective function:  

𝐿𝐿(𝜃𝜃) = 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝐹𝐹�𝑥𝑥𝑖𝑖 ,,𝜃𝜃� − 𝑦𝑦𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

(8) 
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E. Training Strategies 

1) Activation function 
 
After conventional sigmoid-like units used in deep learning, ReLU was a popular 

activation function. For ReLU, the result is zero if the input is less than zero. PReLU 

introduces a learning parameter in the negative part. It's a general form of ReLU, of 

course. As stated in [43], the slope an in PReLU is an adaptively learned parameter 

that can offset the positive mean of ReLU and make it somewhat symmetrical. 

Experiments also show that PReLU converges and performs better faster than ReLU. 

2) TRAINING Data 

 
The training data plays an important role in deep learning. It is broadly known that 

deep learning generally benefits from the accessibility of huge scale training data. In 

order to prepare the proposed network successfully, we need to collect sufficienthigh-

quality full color images as training data. Data sets the thesis using isMSR-

demosaicking [48].The Microsoft Research Cambridge demo data set consists of a set 

of raw images and their downscale versions that can be used in linear space and color 

space to learn and evaluate demosaicking (and possibly other tasks such as 

denoising). 

3) Parameter Setting 

In our experiments, the network weights are initialized based on the method in 

Xavier Initialization. The Adam optimization is adopted to optimize the network 

parameters Θ 
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Figure 0.3illustrates validation pnsr changes with 70 training epochs of the same 
network architecture. 

 

Figure 4.3 show validation set mean pnsr for each epoch. Validation mean pnsr start 

from 20 to 34.95. for first 15 epochs pnsr increase with marginally gap and at some 

point, validation mean pnsr decrease. After 15 epochs pnsr increase with marginally 

minor gap but important increase. MARN first epochs mean validation set pnsr is high 

as MARN is using xaivor initialization for initialization weight. 
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Chapter 5 

EXPERIMENTAL RESULTS 
In this section, we explain the details of the implementation and examine the quality o

f the proposed MARN - JDD method by comparing it to standard and state - of - the -

 art algorithms for joint demosaicking and denoising. 

A. Test Datasets 

We compare the proposed method with state-of-the-art Kodak data set and McMaster 

data set, which contain respectively 24 and 18 natural imageswith a resolutionof 

500x500. The images of Bayer are sampled from images of ground truth. Noisy 

images are obtained by adding Gaussian white noise from ground truth images. The 

noise is homogeneous if not specified.We chose Kodak due to each Kodak dataset 

used for comparison with denoising - demosaicking paper and the McMaster dataset 

because the images have lower spectral correlations and are comparable to the images 

taken by color sensors. 

 

B. Implementation Details 

 
We used Pytorch to implement the MARN-JDD network as our framework. We 

collected 400 images of Panasonic and Canon MSR-Demosaicking for our training 
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data. We collected 100 images of Panasonic and Canon MSR-Demosaicking [48] for 

validation. 
 

C. Experimental Setting 

We evaluated the proposed deep residual networks for joint demosaicking and 

denoising with state-of-the-art Kodak data sets and McMaster data sets with 24 and 

18 natural images respectively. These test data are displayed again, so that the 

following experiments differ from the standard camera pipeline used in practical 

scenarios. By adding white Gaussian noise to the Bayer images, we get the noisy 

Bayer mosaic input. The sizes of all convolution kernels are 3 × 3 implementation. 

The MARN-JDD system was trained using the stochastic gradient decent with the 

following parameters. 

Base learning rate 0.001 

Channels 3 

Number of layers 16  

Batch size 2 

Training iteration 200 

Epochs 270 

 

For optimal results author performed many experiment after that number of factor 

which improve our result are explain:Learning rate matter a lot to reflect the result to 

compete with state of arts algorithm so we analysis many training experiment after 

that we concluded that if we set learning rate to 0.001 after 60 epochs our validation 

pnsr zig zagging from low to high and high to low so we change learning after 60 

epochs to 0.0002 and after 165 epochs to 0.0001. learning rate setting helps us to 

reduce epochs, increase validation which will affect our testing pnsr. Number of 

epochs don’t affect result after some limit i.e. 270 epochs in our case. In an epoch 

iteration effect, the result if we increase iteration in an epoch. Our result increase 1-2 

dB in iterations increase. Kernel size also effect result as first layer and last layer use 

3*3 kernel. Number of layer effect result but also effect the performance in term of 

time.It’s a trade-off between the number of layers and time to demonstrate and denote 

jointly, so a decision can be made between them. Because if we use more layer for the 

results, joint demosaicking and denoising takes more milliseconds than more state-of - 
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the-art algorithms. So, it's a trade-off between the two, so we made a choice at a time 

when we have little time and more layer.  Activation function also improve 

performance. The latest two activation function are ReLU and PReLU and main 

argument for the Parametric ReLU over-standard ReLU's is that they do not saturate 

as you approach the ramp. They don't offer a distinct advantage in most other ways. 

The effect may not seem dramatic, but in some cases, it can be profoundly 

advantageous. It also shows that the use of PReLU came at a marginal cost, but we 

use PReLU.The addition of batch normalization between each convolution and 

PReLU is destructive for demosaicking, but effective for denoising. It turns out that 

batch normalization destroys the ability of deep models to generalize in our 

MARUblock, so remove the MARU block and add it to the Denoiser block. 

 

D. Comparison with state-of-the-art algorithms 

 

The results were assessed utilizing the structural similarity (SSIM)index and peak 

signal-to-noise ratio (PSNR). 

We compared the results of ours with equally standard as well as present state-of-the-

art algorithms such as FlexISP, ADMM,DeepJoint and DRDD-16J Figure5.1and 

5.3lists the overall performance of all McMaster and Kodak data sets techniques. We 

can see that MARN JDD performed much better than all the other techniques 

mentioned for all the pictures in the Kodak, McMaster data set.We have changed the 

noise level of Bayer input imagesto different settings: σ = 0, σ = 5,σ = 10, σ = 15, σ = 

20, and σ = 25. Note that the results for noise level being zero means the JDDproblem 

degenerates to the original demosaicking problem. MARN-JDD training time is small 

as compared other state of algorithm. MARN-JDD model has training dataset that 

contain only 500images which is too much small as compared to DeepJoint[2] and 

others.
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Figure 0.1Kodak per image results (PSNR) on noise level σ = 20. 
 
 

 
Figure 0.2Kodak per image results (SSIM) on noise level σ = 20. 

 

Figure 5.1 and 5.2 visually shows Kodak's results in PNSR and SSIM.Figure 5.1 

comparison in PNSR show that MARNperform better on 19 images out of 24 

imagesthen rest of algorithms. Figure 5.2 comparison in SSIM show that 

MARNperform better on 21 images out of 24 imagesthen rest of 

algorithms.FlexISP,DeepJoint and GAN-DDJ results for the Kodak dataset suffer 

from artifacts such as visible noisy pixels or strange textures caused by denoising. 

With visible noisy pixels, the results of FlexISP degrade rapidly as the noise level 

increases. MARNDD's results, however, remain good and stable, showing the 

strength of the proposed algorithm. 
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Figure 0.3McMaster per image results (PSNR) on noise level σ = 20. 
 

 

 Figure 0.4McMaster per image results (SSIM) on noise level σ = 20. 
Figure 5.3,5.4 shows the results of PSNR & SSIM on the McMaster dataset with a 

noise level of σ = 20.From Figure 5.3 and 5.4 MARN result are stable from state of 

the arts algorithm due to residually natural of MARN.  Figure 5.3comparison in 

PNSR show that our MARNperform better on 10 images out of 18 imagesthen rest of 

algorithms. Figure 5.4 comparison in SSIM show that our MARNperform better on 14 

images out of 18 imagesthen rest of algorithms. It can be concluded that in most test 

cases our method is much better than comparative methods. 
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Table 4 Average PSNR (dB) comparisons for the joint demosaicking and de-noise 
results. The best is in bold. 

Dataset  
Noise 

Level 
FlexISP ADMM  DeepJoint DRDD 

MARN-

DD 

Kodak 

(24 

images) 

σ = 0  34.98  31.63  39.57  40.40 38.11 

σ = 5  31.31  31.60  36.11  36.38 35.89 

σ = 10 28.64 31.04 31.65 N/A 33.66 

σ = 15  26.67  30.16  31.28  31.59 32.07 

σ = 20 25.15 29.26 29.17 N/A 30.87 

σ = 25  23.90  28.38  26.13 29.18 29.92 

McM 

(18 

images) 

σ = 0  35.18  32.66  37.60  37.52 34.86 

σ = 5  31.17  32.63  35.53  35.47 33.92 

σ = 10 28.51 31.72 30.95 N/A 32.63 

σ = 15  26.55  30.50  31.28  31.49 31.51 

σ = 20 25.01 29.31 28.79 N/A 30.55 

σ = 25  23.73  28.20  26.57 28.90 29.71 

 

 

We also alternate the noise level of Bayer's input images from σ= zero to 25. Results 

for noise degree σ =0, which means that the problem degenerates into a demosaicking 

problem, are additionally listed. The average PSNR results can be found in Table 4. In 

comparison to DRDD-16J, we achieve an average gain of .59 dB and DeepJoint, we 

achieve an average gain of 3.64 dB and an average gain of 5.28 dB compared to 

FlexISP in the Kodak dataset. As for the McMaster dataset, we gain from noisy Bayer 

input from 2.18 dB to 6.31dB. We can conclude from the table that the higher the 

noise level, the higher our algorithm outperforms compared to algorithms. In other 

words, our method is much more robust in noise level variations. 

 

 

 

Table 5Average SSIM comparisons for the joint demosaicking and de-noise results. 
The best is in bold. 

Dataset  Noise FlexISP ADMM  DeepJoint MARN-
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Level DD 

Kodak 

(24 

images) 

σ = 0  0.9426 0.8873 0.9271 0.978 

σ = 5  0.8694 0.8787 0.9058 0.951 

σ = 10 0.7583 0.8595 0.8731 0.917 

σ = 15  N/A N/A N/A 0.886 

σ = 20 0.5520 0.8132 0.8015 0.858 

σ = 25  N/A N/A N/A 0.831 

McM 

(18 

images) 

σ = 0  0.9385 0.9052 0.8876 0.937 

σ = 5  0.8627 0.8966 0.8739 0.921 

σ = 10 0.7534 0.8699 0.8467 0.899 

σ = 15  N/A N/A N/A 0.876 

σ = 20 0.5556 0.8046 0.7789 0.853 

σ = 25  N/A N/A N/A 0.830 

The average SSIM results can be found in Table 5. In comparison to DeepJoint, we 

achieve an average gain of .05 and ADMM, we achieve an average gain of .04 and an 

average gain of .09 compared to FlexISP in the Kodak dataset. 

The subjective quality comparison results are shown in Figs.12-18 with a noise level 

of σ = 20. We note that the SEM method suffers from a lack from of noise robustness; 

FlexISP, DRDD and DeepJoint methods suffers from various artifacts such as vertical 

color lines, remaining noisy pixels and unnatural color. The ADMM algorithm is 

relatively good among the competing approaches, but in terms of visual quality still 

falls behind when compared to our method.In terms of fewer artifacts, better 

preserved fine details (e.g. flower petals, wood texture patterns and hairs) and more 

vivid color showing the superiority and robustness of the proposed algorithm, the 

reconstructed images by our method appear much better visually. 

 

Table 6 Running Time of Joint Demosaicking and Denoising (seconds) 

Dataset (Image Size) FlexISP 
(CPU) 

ADMM 
(CPU) 

DeepJoint 
(CPU/GPU) 

DRDD-16 
(CPU/GPU) 

MARN(GPU) 

McM (500 ×500) 233.94  705.47  5.43 / 0.12  3.93 / 0.88 0.73 
 

E. Running Time Comparison 

Table 5 provides an average comparison of joint demo and denoising runtime. The 

data are measured on a Google Colab and other documents. With proper settings, all 

methods process 500× 500 images only once without cutting or scaling, which ensures 
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a fair comparison. DeepJoint, MARN are much faster than FlexISP and ADMM. 

MARN is marginal fast from DRDD. 

 

Figure 0.5Visual Results of McMaster18 with σ = 20 noise for Joint denoising and 
demosaicking. (a) BayerNoisy image; (b) Original image; (c) FlexISP result 
(PSNR=24.80, SSIM=0.6084); (d) SEM result (PSNR=23.11, SSIM=0.4183); (e) 
DeepJoint result (PSNR=28.07, SSIM=0.7706); (f) ADMM result (PSNR=28.50, 
SSIM=0.7862); (g) GAN result (PSNR=30.00, SSIM=0.8387); (i) our MARN-JDD 
result (PSNR=30.164, SSIM=0.842) 
 

 
Figure 0.6Visual Results of McMaster17 with σ = 20 noise for Joint denoising and 
demosaicking. (a) BayerNoisy image; (b)Original image; (c) FlexISP result 
(PSNR=22.80, SSIM=0.5217); (d) SEM result (PSNR=24.33, SSIM=0.4072); (e) 
DeepJoint result (PSNR=26.35, SSIM=0.7051); (f) ADMM result (PSNR=27.42, 
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SSIM=0.7586); (g) GAN result (PSNR=28.33, SSIM=0.8000) (h) our MARN-JDD 
result (PSNR=27.66, SSIM=0.805) 
 

 
Figure 0.7Visual Results of McMaster7 with σ = 20 noise for Joint denoising and 
demosaicking. (a) BayerNoisy image; (b) Original image; (c) FlexISP result 
(PSNR=25.62, SSIM=0.5647); (d) SEM result (PSNR=24.02, SSIM=0.3696); (e) 
DeepJoint result (PSNR=28.44, SSIM=0.7478); (f) ADMM result (PSNR=28.62, 
SSIM=0.7434); (g) GAN result (PSNR=29.63, SSIM=0.8134); (h) our MARN-JDD 
result (PSNR=30.31, SSIM=0.837). 
 

Chapter 6 

CONCLUSION 
 

This thesis determines that quality of demosaicking and denoising is always enhance 

by a joint strategy according to a deep neural. MARN-JDD network turnout excellent 

results equally qualitative and quantitative when compared with the present state-of-

the-art network.While doing so, MARN JDD strategy is able to generalize well even 

if it is trained on small data sets and the number of our network variables is low 

compared to other competing solutions. Experimental results show that in objective 

and subjective evaluations, the proposed method outperforms several existing or 

perhaps state-of - the-art techniques. 
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Figure 0.1Visual Results of McMaster4 with σ = 20 noise for Joint denoising 
and demosaicking. (a) BayerNoisy image;(b) 
Original image; (c) FlexISP result(PSNR=24.30, SSIM=0.6481); (d) SEM 
result(PSNR=22.67, SSIM=0.3639);(e)DeepJoint result(PSNR=29.04, 
SSIM=0.8819); (f) ADMM result(PSNR=28.89, SSIM=0.9119); (g) GAN 
result(PSNR=31.17, SSIM=0.9261); (h) our MARN-JDD result(PSNR=30.50, 
SSIM=0.92). 
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Figure 0.2Visual Results of kodak24 with σ = 20 noise for Joint denoising and 
demosaicking. (a) BayerNoisy image;(b) Original image; (c) FlexISP result 
(PSNR=24.14, SSIM=0.5745); (d) SEM result (PSNR=22.79, SSIM=0.4939) 
;(e) DeepJoint result (PSNR=27.30, SSIM=0.7925); (f) ADMM result 
(PSNR=27.43, SSIM=0.8082); (g) our GAN result (PSNR=28.82, 
SSIM=0.8460); (h) our MARN-JDD result (PSNR=29.32, SSIM=0.86). 

 

Figure 0.3Visual Results of kodak3 with σ = 10 noise for Joint denoising and 
demosaicking. (a) BayerNoisy image;(b) Original image; (c) FlexISP result 
(PSNR=30.90, SSIM=0.7521); (d) SEM result (PSNR=30.36, SSIM=0.6973) 
;(e) DeepJoint result (PSNR=33.99, SSIM=0.9009); (f) ADMM result 
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(PSNR=33.40, SSIM=0.8949);  (g) GAN result(PSNR=36.57, SSIM=0.9370); 
(h) our MARN-JDD result(PSNR=35.28, SSIM=0.927). 

 

Figure 0.4Visual Results of kodak4 with σ = 10 noise for Joint denoising and 
demosaicking. (a) BayerNoisy image;(b) Original image; (c) FlexISP result 
(PSNR=29.67, SSIM=0.7395); (d) SEM result (PSNR=29.63, SSIM=0.7055) 
;(e) DeepJoint result (PSNR=32.43, SSIM=0.8495); (f) ADMM result 
(PSNR=31.93, SSIM=0.8414); (g) GAN result (PSNR=34.27, SSIM=0.8928). 
(h) our MARN-JDD result (PSNR=34.45, SSIM=0.898). 
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Figure 0.5Visual Results of kodak9 with σ = 10 noise for Joint denoising and 
demosaicking. (a) BayerNoisy image; (b) Original image; (c) FlexISP 
result(PSNR=30.53, SSIM=0.7621); (d) SEM result(PSNR=30.71, 
SSIM=0.7244); (e) DeepJoint result(PSNR=34.01, SSIM=0.9031); (f) ADMM 
result(PSNR=32.99, SSIM=0.9025); (g) GAN result(PSNR=36.05, 
SSIM=0.9280); (h) our MARN-JDD result(PSNR=36.04, SSIM=0.925) 
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