SMART PREPAID ELECTRICITY SYSTEM

Muhammad Sohaib Khan	01-132152-023
Muhammad Usman	01-132152-027
Hamza Cheema	01-132152-009

Supervised by

Engr. Muhammad Saim

Department of Computer Engineering Bahria University Islamabad. 2019

UNDERTAKING

I certify that research work titled "Smart Prepaid Electricity System" is my own work. The work has not been presented elsewhere for assessment. Where material has been used from other sources it has been properly referred.

Muhammad Sohaib Khan

01-132152-023

Muhammad Usman

01-132152-027

Hamza Cheema

01-132152-009

DEDICATION

"We would like to thank our supervisor Engr. Muhammad Saim, our parents and friends who constantly encouraged and blessed us to do this work successfully. The true value of a teacher is determined not by what he knows, nor by his ability to impact what he knows, but by his ability to stimulate in others a desire to know. So, we want to say thanks to our Teachers."

ACKNOWLEDGEMENT

Being students of Bahria University from Computer Engineering department, we were assigned this project. By the grace of Allah who is the source of all knowledge, he gave us knowledge to complete this project. We owe a considerable debt to large number of people who either directly or indirectly helped us during various phases of Final Year Project. It was a new experience, exciting but challenging indeed. We are very grateful to Sir Engr. Muhammad Saim for his help and guidance throughout the entire processes of this project. His supervision helped us in understanding and studying the new expects and transforming our theoretical knowledge in practical understanding, despite of his heavy commitments he always found time to answer our questions, resolve queries and never ran out of patience. We are grateful to the entire faculty of Computer Engineering Department, Bahira University, Islamabad Campus for providing us their valuable knowledge. We are thankful to our family, friends and parents who helped us morally and supported us in every quest of our life.

ABSTRACT

In the course of recent years, smart devices have accomplished a developing acknowledgment as an effective instrument for security, recognizable proof, and approval. As of late, with the tremendous change we are seeing a great development in the quantity of web based smart devices and mobile devices, including smart telephones, remote PDAs and different virtual worlds empower electronic type of equipment's. Proficient and smart prepaid meters are likewise being utilized to give dependable metering and billing system. By doing so it disposes of various security and duty related issues. Number of countries such as USA, UK, Belgium, Germany and Iran and so forth are utilizing such meters for gas and power utilization. With a specific end goal to wipe out the need of month to month charging, billing collection and to make the conventional metering system more effective smart prepaid metering system is being proposed. In the framework proposed, we are using GSM module which keeps user informed about the activity status of the meter. NFC module and Prepaid card are being used as payment mechanism by using NFC reader and keypad respectively. By using LCD in the framework proposed, user will be well informed about the power consumption.

Keywords:

NFC, PDA's, GSM, Prepaid, Electric Meter

Table of Contents

Undertaking	<u>, </u>	i
Dedication.		iii
Acknowledg	gement	iii
Abstract		iv
List of Figu	res	vii
List of Table	es	ix
Chapter I:	Introduction	1
1.1: Ob	jectives	2
1.2: Ad	vantages of prepayment	3
1.3: Blo	ock Diagram	3
1.4: His	story	4
1.5: Ty	pes of meters	4
1.5.1:	Direct Current (DC) Meters	4
1.5.2:	Alternating Current (AC) Meters	4
1.5.3:	Electronic Meters	5
1.6: Pro	oject Background	5
1.6.1:	Prepaid Based Meters Architectural Design	5
1.6.2:	RFID Meters	6
1.7: Pro	oblem Description	7
1.8: Pro	oject Scope	8
1.8.1:	Design Scope and Delimitation	8
Chapter II:	Literature Review	9
2.1: Pas	st Published Paper Work	9
2.1.1:	Using GAS Metering Prepaid System	9
2.1.2:	Design structure	11
2.2: Ex	isting systems	11
2.2.1:	System based on WIFI	11
2.2.2:	System based on RFID	12
2.2.3:	System based on buzzer triggering	14
2.3: Pro	pposed system	15
2.3.1:	System based on GSM	15
2.3.2:	NFC based Smart Prepaid System	16

Chapter	III:	Design and Methodology	18
3.1:	Syst	tem Architecture	18
3.2:	Des	ign Constraints	19
3.3:	Des	ign Methodology	19
3.4:	Low	v Level Design	21
3.5:	Syst	tem Design	21
3.6:	Too	ols and Technology Used	22
3.7:	Dev	relopment Environment/Languages Used	30
3.8:	Pro	cessing Logic/Algorithms	30
Chapter	IV:	Results and Discussion	32
4.1:	Test	ting and Evaluation Phase:	32
4.2:	Disc	cussion	35
Chapter	V:	Conclusion	37
Chapter	VI:	Future Work	38
6.1:	App	plication Access Security	38
6.1.	1:	Authentication	38
6.1.	2:	Authorization	38
6.1.	3:	Cryptograph	38
Reference	ces		39
Abbrevi	ation	IS	41
Annend	lix		42

List of Figures

Figure		Page
Fig 1.1	Block diagram of Proposed System	3
Fig 1.2	PPM Based Meter Architecture	5
Fig 2.1	Past Designed Prepaid Gas Meters	10
Fig 2.2	Contactless Smart Prepaid Electricity System	11
Fig 2.3	System Based on Wi-Fi	12
Fig 2.4	RFID Hardware Diagram	14
Fig 2.5	Block Diagram of Prepaid Card Based System	15
Fig 2.6	GSM Based Smart Prepaid Electricity System	16
Fig 3.1	Flow Diagram of Smart Prepaid Electricity System	19
Fig 3.2	Flow Chart for the Server Program	20
Fig 3.3	Framework for Power Consumption for Main Line	22
Fig 3.4	GSM Module SIM900	25
Fig 3.5	Arduino Atmega-2560	26
Fig 3.6	Pin Diagram of Wi-Fi Module ESP-8266	27
Fig 3.7	NFC Module	27
Fig 3.8	A Typical Relay	28
Fig 3.9	Relay Being Used	28
Fig 3.10	Pin Configuration of LCD	29
Fig 3.11	LCD Connected with Arduino	29
Fig 3 12	Voltage Sensor	30

Fig 3.13	Bridge Rectifier
Fig 3.14	Soldering Iron
Fig 4.1	Circuitry for Resolving Current Sensing Issue in Arduino34
Fig 4.2	Removal of Negative peaks for Arduino35
Fig 4.3	Scaling Down with Current and Voltage Sensor
Fig 4.4	Final Proposed Smart Prepaid Electricity System38

List of Tables

Table		Page
Table 3.1	Pin Description of 16x2 LCD	30
Table 3.2	Comparison between Smart and Conventional Meters	33