RESERVOIR EVALUATION OF SUI MAIN LIMESTONE USING SEISMIC AND WELL DATA OF QADIRPUR AREA, CENTRAL INDUS BASIN, PAKISTAN

By

ABDUL REHMAN TAHIR

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

RESERVOIR EVALUATION OF SUI MAIN LIMESTONE USING SEISMIC AND WELL DATA OF QADIRPUR AREA, CENTRAL INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of MS in Geophysics

ABDUL REHMAN TAHIR

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

CERTIFICATE OF ORIGINALITY

This is to certify that the intellectual contents of the thesis

Reservoir Evaluation of Sui Main Limestone using Seismic and Well Data of Qadirpur Area, Central Indus Basin, Pakistan

are the product of my own research work except, as cited properly and accurately in the acknowledgements and references, the material taken from such sources as research papers, research journals, books, internet etc. solely to support, elaborate, compare and extend the earlier work. Further, this work has not been submitted by me previously for any degree, nor it shall be submitted by me in future for obtaining any degree from this university, or any other university or institute. The incorrectness of this information, if any, proved at any stage, shall authorize the university to cancel my degree.

Signature: _____

Date:

Name of Research candidate:

Abdul Rehman Tahir

ABSTRACT

The study area is located in Qadirpur block, Central Indus Basin situated in Sindh province of Pakistan. It is bounded by Sargodha high in the North, Sukkur rift in the South Indian shield on the Eastern side and in marginal zone of Indian plate is on the West. Qadirpur area has strong exploration history in the gas exploration and production and named as second largest gas field in Pakistan. 2D seismic data interpretations along with petrophysical analysis, facies modeling and reserves estimation have been done in Qadirpur area to characterize the reservoir properties and the structure styles existing in the area. Further studies and interpretations are still being made in the area to enhance the hydrocarbon production. Due to the geological setting of Oadirpur area, normal faulting is observed in the area with horst and graben structures. Interpretation was done on five seismic lines data and well logs data of two wells. Three horizons have been marked which are Habib Rahi Limestone, Sui Upper Limestone and Sui Main Limestone. In this area, the source rock is Sembar shale. Sui Main Limestone is primary reservoir while Habib Rahi Limestone is acting as secondary reservoir. Ghazij shale is acting as regional seal in the area. Out of five zones marked in the petrophysical analysis, two zones have proved to be more promising. Zone 1 of Qadirpur-14 well having average porosity values of 18-19%, the 10m thick zone have 60-70% saturation of hydrocarbon. Sui Main Limestone is proven to be reservoir in this well. In Qadirpur-03 well, 13m thick zone have porosity values ranging from 15-18%. Saturation of hydrocarbon was 60-72%. Habib Rahi Limestone is proven to be reservoir in this well. Facies modeling which was done to identify and characterize the lithology in both wells. For this purpose, combination of GR, LLD and RHOB log was plotted, resulting in the formation of polygons and by using the logs behavior and color scheme formations were marked and identified. Volumetric reserves estimation technique was applied in order to find the mean recoverable reserves of the area and it turns out to be 0.23 billion cubic feet.

ACKNOWLEDGEMENTS

I am thankful to my supervisor Ms. Urooj Shakir for her precious time she dedicated for the completion of this research work. I want to express gratefulness to our respected Head of Department, Prof. Dr. Tahseenullah Khan for the guidance throughout the research period. I would like to express my special thanks of gratitude to Fahad Mehmood for all the support he has provided during the research work. I am grateful to my family for the support and backing during the whole period of my work.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	vii
TABLES	ix

CHAPTER 1

INTRODUCTION

1.1	Location and physiography	1
1.2	Exploration history	2
1.3	Geological and geophysical data used	2
1.4	Research objectives	3
1.5	Literature review	4
1.6	Methodology	5

CHAPTER 2

GENERAL GEOLOGY AND PETROLEUM SYSTEM

2.1	Tectonic setting	6
2.2	Indus basin of Pakistan	7
2.3	Stratigraphy of the area	8

2.4	Borehole stratigraphy	10
2.5	Petroleum play system	10
2.5.1	Source rock	11
2.5.2	Reservoir rock	11
2.5.3	Seal rock	11

CHAPTER 3

SEISMIC INTERPRETATION

3.1	Methodology	12
3.1.1	Synthetic seismogram for horizons identification	12
3.2	Marking of horizons	13
3.3	Time contour maps	19
3.3.1	Time contour map of Habib Rahi limestone	19
3.3.2	Time contour map of Sui upper limestone	20
3.3.3	Time contour map of Sui main limestone	21
3.4	Depth contour maps	21
3.4.1	Depth contour map of Habib Rahi limestone	22
3.4.2	Depth contour map of Sui upper limestone	23
3.4.3	Depth contour map of Sui main limestone	24

CHAPTER 4

PETROPHYSICAL ANALYSIS, FACIES MODELING AND RESERVES ESTIMATION

4.1	Data used	25
4.2	Methodology	25
4.3	Zones of interest	28
4.4	Calculation of volume of shale	33
4.5	Resistivity of water	34
4.6	Porosity calculation	34
4.6.1	Neutron porosity	34
4.6.2	Density porosity	34
4.6.3	Effective porosity	35
4.6.4	Sonic porosity	35
4.7	Saturation of water	35
4.8	Saturation of hydrocarbon	36
4.9	Results	37
4.10	Facies modeling	38
4.10.1	Methodology	38
4.10.2	Color scheme adopted for facies modeling	38
4.10.3	Results	39
4.11	Reserves estimation	39

DISSCUSSION	43
CONCLUSIONS	44
RECOMMENDATIONS	45
REFERENCES	46

FIGURES

		Page
Figure 1.1.	Location map of study area	2
Figure 1.2.	Base map of study area	3
Figure 1.3.	Workflow of methodology used during research	5
Figure 2.1.	Generalized tectonic map of Pakistan	7
Figure 2.2.	Generalized stratigraphic column of Central Indus Basin	9
Figure 3.0	Generated synthetic seismogram showing the time values of horizons	13
Figure 3.1.	Interpretation of seismic line 90-QPR-05	14
Figure 3.2.	Interpretation of seismic line 90-QPR-06	15
Figure 3.3.	Interpretation of seismic line 985-QPR-01	16
Figure 3.4.	Interpretation of seismic line 985-QPR-02	17
Figure 3.5.	Interpretation of seismic line 985-QPR-03	18
Figure 3.6.	Time contour map of Habib Rahi Limestone	19
Figure 3.7.	Time contour map of Sui Upper Limestone	20
Figure 3.8.	Time contour map of Sui Main Limestone	21
Figure 3.9.	Depth contour map of Habib Rahi Limestone	22
Figure 3.10.	Depth contour map of Sui Upper Limestone	23
Figure 3.11.	Depth contour map of Sui Main Limestone	24
Figure 4.1.	Well log of Qadirpur-03 well, marked zones of interest are highlighted	26
Figure 4.2.	Well log of Qadirpur-14 well, marked zones of interest are highlighted	27

Figure 4.3.	Zone of interest -1 in Qadirpur-14 well	29
Figure 4.4.	Zone of interest -2 in Qadirpur-14 well	30
Figure 4.5.	Zone of interest -3 in Qadirpur-14 well	31
Figure 4.6.	Zone of interest -1 in Qadirpur-03 well	32
Figure 4.7.	Zone of interest -2 in Qadirpur-03 well	33
Figure 4.8.	Facies modeling using well logs of Qadirpur 03	31
Figure 4.9.	P90 case of the Qadirpur-14 (Sui Main Limestone) showing total recoverable gas whole trap	41
Figure 4.10.	P50 case of the Qadirpur (Sui Main Limestone) showing total	42
	recoverable gas whole trap	
Figure 4.11.	P10 case of the Qadirpur-14 (Sui Main Limestone) showing total	42
	recoverable gas whole trap	

TABLES

		Page
Table 1.1.	Available seismic and well data	3
Table 2.1.	Formation tops of Qadirpur-03 well	10
Table 2.2.	Formation tops of Qadirpur-14 well	10
Table 4.1.	Methodology adapted for petrophysical analysis	28
Table 4.2.	Petrophysical results of two wells	37
Table 4.3.	Color scheme adopted for facies modeling	38
Table 4.4.	Volumetric estimation of Qadirpur area	40