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Abstract

Fake news, spread through social media, pose a serious threat to our society.
Identifying fake news is a complicated task. The first step leading to an
automated fake news detection system is stance detection i.e the relevence
between headline and the body of an article. Stance detection can help in
identifying click-bait headlines with unrelated body text(a technique mostly
used by fake news distributors) and in evaluating the stance different news
sources take towards a claim. In this project, we design and develop a
system to detect stance between two bodies of text using Natural Language
Processing techniques.
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Chapter 1

Introduction

1.1 Overview

With the advent of social media networks, more and more people have
started to rely on news from social media. In contrast to the traditional
news mediums, news on social media is easily accessible and less expensive.
It is also easier to share and discuss the news with other readers. Despite its
advantages, social media is a double-edged sword as it enables “fake news”
to be circulated easily as well. Fake news [10] , is a made-up story with an
intention to deceive and is often used to attract readers to generate ad rev-
enue or to spread propaganda. Fake news spreads confusion among people
about current events. Thus, detection of fake news from social media, has
become an important issue.

To address this issue, many fact checking services like Snopes [9] and Full-
Fact [3] have emerged in the recent past. These services rely on journalists
to manually check news authenticity by collecting evidences. However with
the amount of news content on the internet rapidly increasing day by day,
it is not feasible to classify every news article on the internet manually.

With recent advancements in the field of artificial intelligence technology,
researchers believe that the issue of fake news detection can be solved to
some extent by using machine learning techniques [4]. However due to the
complex nature of human language, detecting fake news accurately is a big
challenge. Researchers are trying to fully or partially automate the process
of fake news detection using different methods.

1.2 Problem Description

Various social media platforms like Facebook and Twitter, these days,
are not only used to interact but also to disseminate different types of news
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instances as well. Unfortunately, the massive amount of information flow
makes it difficult for moderators to verify the authenticity of each and ev-
ery news article being posted on their platform. This allows social media
users with malicious intentions to spread fake news using these platforms.
These maligns the repute of the said social media platform. Therefore it is
important for moderators to verify the authenticity of news instances being
posted on their platform in order to control the dissemination of fake news.
However checking the authenticity of every item manually is a time consum-
ing task. An automated tool which can detect fake news using contextual
information can help social media moderators to assess the authenticity of
news articles being posted on their platforms.

It is observed that fake news distributers use “click-bait” headlines and
unrelated body text. Unfortunately, most readers only read the headlines
and share them with their friends/followers on social media. By determining
the stance between the headline and body, fake news classification can be
achieved. In this project, we intend to develop a system which can auto-
matically classify the stance between the headline and the body text and
thus determine whether the news article is fake or real.

1.3 Project Objective

The objective of this project is to develop an application to detect fake
news by detecting the stance of the news headline with its body text. The
system will take a news headline and body as input and will classify stance
as one of the following four classes:

• Agree: The body text agrees with the headline.

• Disagree: The body text disagrees with the headline.

• Discuss: The body text discuss the same topic as the headline.

• Unrelated: The body text discusses a different topic than the head-
line.

If the stance is classified as either Unrelated or Disagree, the news is flagged
as Fake. Similarly if the stance is either Agree or Discuss, the news is flagged
as True.

1.4 Project Scope

This project focuses on textual content from the news articles. Manipu-
lated images/video detection and source based authentication is beyond the
scope of this project.
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Chapter 2

Literature Review

This chapter reviews the state of art in the field of fake news detection.

2.1 Fake News Detection

Kleinberg and Lefefre [7] describe how they created two datasets for the
task of fake news detection and how they used these datasets to train exper-
imental models. The first dataset is obtained using a combination of manual
and crowdsourcing annotation efforts. The second dataset is obtained from
the web targeting celebrities. Authors used these datasets to conduct anal-
ysis to extract linguistic properties present in fake news content. Their fake
news detection models acheived accuracies up to 78%. In addition, they also
provided a comparitive analysis of their models and manual identification of
fake news.

Authors in [4] offer a system to determine the authenticity of a news
article using a Naive Bayes Classifier. The proposed classifier use BoW
features for text classification of body and headlines of news article.The
system is trained on Dataset collected by Buzz Feed News. The dataset
contains information about Facebook post each of which represent a news
articles and implemented as a Software system. There were total 2282 posts.
Authors use Spam messages properties to detect given article is a fake or
not.

2.2 Stance Detection

Stienberg and and Krejzl [5] describes their participation in the Tweets
stance detection task of SemEval 2016. Authors used domain knoledge re-
lated features to detect stance of tweets. The dataset used to train their
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model contains 78256 tweets and was generated by searching for hashtags on
twitter. They defined a domain stance dictionary that lists frequent words in
each stance class. Parts-of-speech tags, General Inquirer and entity-centered
sentiment dictionaries were applied to extract features. Maximum entropy
classifier was used for the classification.

Wu and Cheng [1] proposed a system to to determine the authenticity of
news article using Stance detection. System is trained on FNC-1 dataset.
The proposed system use different features (i.e. BoW Vectors, Cosine sim-
ilarity feature, word sentiment etc) and compare there result. This system
uses SVM, softmax, multinomial Naive Bayes, and MLP as a classification
models.
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Chapter 3

Requirement Specification

This chapter includes overview of existing systems and outlines the func-
tional and non-functional requirements for the proposed system.

3.1 Existing System Overview

Most fake news detection projects focus on curating lists of unreliable and
questionable websites, flagging a news article on the basis of its source. Some
projects apply the techniques of spam detection on news articles. Currently,
many schemes have been proposed to automate fake news detection. Most of
these schemes have been research based only. According to our knowledge,
a user-friendly application has not been developed yet.

3.2 Proposed System Overview

The proposed system is a user-friendly application, allowing the user to
input news to check its authenticity. The main purpose of our project is to
train a model for fake news detection that can classify the user input. To
train the model, Fake News Challenge dataset (FNC-1)[2] is used.
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3.3 Requirement Specification

The functional and non-functional requirements of the proposed system are
given below.

3.3.1 Functional Requirements

The functional requirements of the proposed system are given below.

• The system must classify the headline-body pair provided by the user.

• The system must display the result to the user.

• The system must display extracted features and the stance of user’s
input.

3.3.2 Non-functional Requirements

The non-functional requirements of the proposed system are given below.

• The system should be able to handle exceptions and show error mes-
sages.

• The source code must be modular, allowing iterative improvements
easily.

3.4 Use Case

Figure 3.1 shows the overall use case of the application.
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Figure 3.1: Use Case Diagram

3.4.1 Use Case Descriptive Tables

Title: Start the Application
Actors User, System

Description User visits the application home page.

Pre-condition Correct URL is entered.

Post-condition Home page is displayed.

Table 3.1: Use Case 1.
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Title: Enter News Article

Actors User

Description User enters headline and body of news ar-
ticle in the form.

Pre-condition Home page is displayed.

Post-condition News article is submitted for feature ex-
traction.

Table 3.2: Use Case 2.

Title: Extract Features

Actors System

Description TF and IDF weights are calculated from
the news article provided.

Pre-condition User submitted a news article.

Post-condition Weights are given to the classifier as input.

Table 3.3: Use Case 3.

Title: Classify the Input

Actors System

Description Classifier classifies the input.

Pre-condition Cosine similarity and TF-IDF vectors are
extracted.

Post-condition News article is flagged as either fake or
true.

Table 3.4: Use Case 4.

Title: Display Result

Actors User,System

Description TF-IDF, class probabilities and final re-
sult are desiplayed.

Pre-condition Input is classified by the classifier.

Post-condition User can view the results.

Table 3.5: Use Case 5.
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Chapter 4

Design

In this chapter, we will describe the design, modules and interfaces of the
project. We provide detailed insight into the inner workings of the system.

4.1 System Architecture

The main function of the application that is deployed at the end of the
project is to provide users, with the ability to check the stance between a
headline and an article body. To acheive this, we employed machine learning
techniques to build a model that can take features of a news article as input
and predicts stance as output.

We used a large data-set with headline-body pairs along with their real
stance and trained the model on this data. The model determined the rela-
tionship between features and stance. Once the relationship is determined,
we test the model on new data and compare the predicted results with actual
results to determine its accuracy.

The trained model would run at the backend of our application to pro-
vide predictiions to the user. Our stance detection system has four main
components.

• The data-set

• Feature extraction module.

• Classifier

• User Inteface

The system architecture of our project is shown in Figure 4.1
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Figure 4.1: System Architecture

4.2 Design Methodology

As the functional requirements of the system are known, an incremental
model of the software is used. The incremental model is such which is de-
veloped in increments with each increment adding new functionality to the
system. A model which is developed in increments with every augmenta-
tion adding new functionality and purpose to the system is known as an
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incremental model. Each increment contains some addition functionality.

4.3 High Level Design

Figure 4.2: High Level Diagram

The high level design is the overall design covering the system functionality.
Figure 4.2 gives a high-level view of the system.
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4.4 GUI Design

The GUI of our application is simple and self explanatory. The home page
as shown in figure 4.3 allows user to enter the input. Clicking the predict
button takes user to the results page. The result page as shown in figure 4.4
displays extracted features and the final output.

Figure 4.3: GUI Design: Home Page

Figure 4.4: GUI Design: Results Page
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4.5 Sequence Diagram

A sequence diagram gives the interaction of the objects in a sequence. It
depicts the classes involved in the system. The sequence diagram for the
working of the system is given in Figure 4.5.

Figure 4.5: Sequence Diagram
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Chapter 5

System Implementation

In this chapter we discussed the tools and techniques used in our project.

5.1 Tools Used

Following are the tools used to develop the proposed system.

5.1.1 Anaconda

Anaconda is the most popular platform for Data Science that includes all
the widely used tools and packages required for data analysis and manipu-
lation in Python/R. It handles all the overhead of installing packages sepa-
rately, which can be time-consuming and difficult. The Anaconda Platform
will allow us to focus on the problem without worrying about dependencies.

5.1.2 Scikit-learn

Scikit-learn is a machine learning library. We used Scikit-learn to extract
features from dataset.

5.1.3 Keras

Keras is a user-friendly neural-network library. It is a high-level API to
train deep learning models. We used Keras to train our neural network.

5.1.4 Numpy

Numpy is a Python library that support multi-dimensional matrices and
arrays. Numpy is very useful when working with large data-sets.
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5.1.5 Flask

Flask is micro web framework for Python. It provides minimal function-
ality out of the box which can be extended using extensions. We used Flask
in our project due to it’s simplicity and flexibility.

5.2 Methodology

In this section the methodlology to reach the goal is explained.

5.2.1 Training

To train the classification model, following steps are taken.

5.2.1.1 Load Data

In order to train the prediction model, the training data from the data-set
provided as CSV files is loaded. Every Instance in the training data has a
Headline, Body and Stance.

5.2.1.2 Text to Features

For every instance, Term Frequency and Inverse Document Frequency vec-
tors are extracted from headline and body. Term Frequency-Inverse Doc-
ument Frequency is calculated for headline and body. Cosine Similarity
between TF-IDF of the headline and TF-IDF of the body text is calculated.

A feature vector is prepared for every instance by concatenating TF
weight vectors of headline, Cosine Similarity and TF weight vectors of body.

5.2.1.3 Train Classifier

An MLP is trained using feature vectors and stance as its inputs. The
trained model is saved for testing and deployment. Figure 5.1 shows the
steps involved in training the model.
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Figure 5.1: Training

5.2.2 Testing

To test the trained model, following steps are taken.

5.2.2.1 Load Test Data

To test the trained model, the test data is loaded from the data-set. Every
instance in the test data has a Headline and Body.
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5.2.2.2 Text to Features

For every instance, Term Frequency vectors are extracted from headline
and body. Term Frequency-Inverse Document Frequency is calculated for
headline and body. Cosine Similarity between TF-IDF of the headline and
TF-IDF of the body text is calculated. Term Frequencies of headline, Cosine
Similarity and Term Frequency of body are concatenated in a feature vector.

5.2.2.3 Test Classifier

Trained model is loaded and predictions are made using feature vector as the
model’s input. Confusion matrix and accuracy are calculated and displayed.
Figure 5.2 shows the steps involved in testing the model’s accuracy.

Figure 5.2: Testing

5.2.3 Deployment

To allow users to use our system for stance detection, we created a web ap-
plication using Flask framework. The front-end is designed in HTML/Bootstrap
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and provides a simple interface to give inputs and view results. The model
is loaded when the user starts the application. After taking a headline and
body from user as input, extracted features and the stance is shown to the
user.

5.3 Dataset

The data-set we used to train our model is called FNC-1 [2]. It consists of
49972 headline-body pairs with stances labeled by expert journalists. The
test data consists of 5025 headline-body pairs. Detailed data statistics is
given in Figure 5.3

Figure 5.3: Dataset Summary

5.4 Techniques Applied

Techniques applied in order to implement the algorithm proposed are as
under:

5.4.1 Stance Detection

The goal of stance detection is to predict whether the given body text is
related to the given headline, and what is the relation between them.

Input

A headline and body text, either from same article or from dif-
ferent articles.
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Output

Classify the stance as one of the following:

• Agree

• Disagree

• Discuss

• Unrelated

20



5.4.2 Features

We used two features: Term Frequency and term frequency-inverse docu-
ment frequency[8].

5.4.2.1 Term Frequency

Term Frequency measures how frequently a word appear in a document.Since
every document is different in length, it is possible that a term would ap-
pear more times in long documents than in shorter documents. TF score is
determined by dividing word occurences by the document length.

TF (t) =
Number of times term t appears in a document

Total number of terms in the document

5.4.2.2 Inverse Document Frequency

IDF of a word is the measure of how significant that word is in the dataset
i.e The more documents a word appears in, the less valuable that word is to
differentiate any given document.

IDF (t) = log(
Total number of documents

Number of documents with term t
)

5.4.2.3 TF-IDF

TF-IDF is used to extract most important terms in an article.

tfidf(t) = TF (t) × IDF (t)

A feature vector is generated by concatinating the following:

• TF vector of headline,

• TF vector of body,

• Cosine Similarity between TF-IDF of headline and body.

5.4.3 Classifier

The classifier we used is a Multi Layer Perceptron [6] with one hidden
layer of 100 units and a softmax layer for output. The classifier predicts
the probabilities of classes (’agree’, ’disagree’, ’discuss’, ’unrelated’). It is
implemented using Keras with Tensorflow backend. Figure 5.4 shows an
overview of the classification model.
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Figure 5.4: Multi Layer Perceptron
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Chapter 6

System Testing and
Evaluation

This chapter depicts various testing methods which we conducted on our
application to test its functionality , to be used for the validity of our system.
In software development process the most important phase is testing as it
pin points errors, problems and mistakes in software.

6.1 Graphical User Interface Testing

Graphical user interface is one of the most important parts of a respective
product or system. Through a GUI, user can communicate through out the
system. GUI guides how to use the systems and makes it easy to understand.
A GUI should be appealing, full of interactiveness, and simple in accordance
to the user as ease of use should be experienced by user. Our project GUI
is simple, easy to use and self explanatory. Users who are not familiar to
our application were given the application to test for ease of use. They were
able to understand and use the system with ease. All of them had no issue
during the testing.

6.2 Usability Testing

The usability testing is the testing which is done by the actual users of
the system. As mentioned in the GUI testing, users were able to use our
system with ease. It is the type of testing in which the actual users of the
application test it against standards. As mentioned earlier all users were
able to use our application easily with no issue.
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6.3 Installation Testing

This test is performed to ensure our system can be used across multiple
platforms. As our project is web based, users can access it through a web
browser without installing anything.

6.4 Test Cases

The test cases for our system are mentioned in this section.

Figure 6.1: Test Case 1

Figure 6.2: Test Case 2

Figure 6.3: Test Case 3
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Figure 6.4: Test Case 4

6.5 Results

The performance of our system is summarized by the confusion matrix in
Table 6.5.

Figure 6.5: Confusion Matrix
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Chapter 7

Conclusions

Fake news is a serious problem today and this motivated us to solve this
problem by working on this project. During this project we encountered
many challenges but overall it was a great educational and learning experi-
ence. It also paved way for us to learn about machine learning and natural
language processisng.

7.1 Future Work

Although the accuracy achieved by our project is satisfactory, for better
results, accuracy for the classes ’agree’ and ’disagree’ can be improved by
collecting more data for these classes and adding it to the training data.
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