HYDROCARBON EVALUATION USING GEOLOGICAL, GEOPHYSICAL AND WELL DATA ANALYSIS OF BITRISIM AREA

SUBMITTED BY

HAIDER ALI ALI HASSAN AQEEL TAHIR

Department of Earth & Enviromental Sciences Bahria University, Islamabad

2012

CONTENTS

CONTENTS	i.
FIGURES	v.
TABLES	ix.
DEDICATION	X.
ACKNOWLEDGEMENT	xi.
ABSTRACT	xii.

CHAPTER 1

INTRODUCTION

1.1	Introduction	1
1.2	Objectives	1
1.3	Methodology	2
1.4	Data used	3

CHAPTER 2

GEOLOGY AND TECTONICS

2.1	Introduction	5
2.2	Tectonic zones of Pakistan	5
2.3	Basins of Pakistan	6
2.4	Geological description of Southern Indus Basin	7
2.5	Structural model of Southern Indus Basin	10
2.6	Basic classification of Lower Indus Basin	12
2.6.1	Thar platform	14
2.6.2	Karachi Trough	15
2.6.3	Karachi Foredeep	16
2.6.4	Kirthar fold belt	16
2.6.5	Offshore Indus	16
2.7	Tectonics and structure of Lower Indus Basin	17
2.7.1	Tectonics	17
2.7.2	Structure	19
2.8	Future prospects	20

CHAPTER 3

PETROLEUM SYSTEM

3.1	Petroleum system (Elements)	22
3.1.1	Source rocks	22
3.1.2	Reservoir rocks	23
3.1.3	Traps	24
3.1.4	Seal	27
3.1.5	Migration path	27
3.2	Petroleum system (Processes)	28
3.2.1	Generation	28
3.2.2	Migration	28
3.2.3	Accumulation	28
3.2.4	Preservation	29
3.2.5	Temporal dimension	29

CHAPTER 4

SEISMIC DATA ACQUISITION AND

PROCESSING

4.1	Seismic data acquisition	30
4.1.1	Land data acquisition	30
4.1.2	Marine data acquisition	30
4.2	Acquisition parameters of lines	31
4.2.1	Recording parameters	31
4.2.2	Receiver parameters	32
4.2.3	Source parameters	32
4.3	Seismic data processing	32
4.3.1	Processing Steps	33

CHAPTER 5

SEISMIC DATA INTERPRETATION

5	Introduction	35
5.1	Methods for Interpretation of Seismic Section	35
5.1.1	Structural Analysis	36

5.1.2	Stratigraphic Analysis	36
5.2	Interpretation Procedures	37
5.2.1	Pick Reflection on A Section	37
5.2.2	Phantom Horizon	38
5.2.3	Intersecting Sections	38
5.2.4	Mistie	38
5.2.5	Mistie Analysis	39
5.2.6	Resolve Mistie	39
5.2.7	Tie point of Two Lines	40
5.3	Common Pitfalls of Seismic Interpretation	40
5.3.1	Inherent Problems	40
5.3.2	Multiples	40
5.3.3	Reverberation	41
5.3.4	Diffraction	41
5.4	Interpreting subsurface structure	41
5.5	Fault Interpretation	42
5.6	Interpretation of Bitrisim Block	42
5.7	Stratigraphic Interpretation of the area	49
5.8	Wells Correlation	49
5.9	TWT and Depth structure map of lower goru and basal sand	50
5.10	Synthetic Seismogram	55
5.11	Polarity	56
5.12	Preparation Of synthetic seismogram	56
	CHAPTER 6	
	ROCK PHYSICS AND PETROPHYSICS	
6.1	Available Data for Well Fateh-01	59
6.2	Well Logging	59
6.3	Raw Log Curves	60
6.4	Rock Physics	61
6.4.1	Elastic Parameters	61
6.4.2	Young's modulus	61

6.4.3	Shear modulus or modulus of rigidity	63
6.4.4	Bulk modulus	65
6.4.5	Poisson ratio	68
6.5	Well Logs	69
6.5.1	Formulas	69
6.6	Rock physics on seismic data	74
6.6.1	Calculation of V _s	74
6.6.2	Calculation of density	75
6.6.3	Petrophysical interpretation	83
6.7	Zone Of Interest	84
6.8	Lithology Interpretation from Wire Line Logs	84
6.8.1	Volume of Shale (V _{sh})	86
6.9	Porosity Calculation	87
6.10	Saturation of Hydrocarbon	90
6.10.1	Resistivity of Water (R _w)	91
6.10.2	Resistivity of mud filtrate (R _{mf})	92
6.10.3	Formation R _{mf}	94
6.10.4	Saturation of Formation	95
6.10.5	Water Saturation	96
6.10.6	Saturation of Hydrocarbons	96
6.11	Results of the petrophysical evaluation	96
6.11.1	Lower Goru Formation of Fateh-01 (2700m-3000m)	97
6.12	Cross plot Between Depth and Porosity	101
	Conclusions	102
	References	103

LIST OF FIGURES

Figure 1.1 Location of Bitrisim Block	2
Figure 1.2 Base map of the study area showing seismic lines and well Fateh-01	4
Figure 2.1 Map Showing Tectonic Zones of Pakistan	6
Figure 2.2 Sedimentary Basins of Pakistan	7
Figure 2.3 Generalized stratigraphic sequence and occurrence of hydrocarbons	
in the southern Indus basin (modified after Shah, 1977; Raza et al., 1990)	9
Figure 2.4 Proposed schematic tectonic models illustrating stages of evolution	
of the southern Indus basin	12
Figure 2.5 Structural setting of Southern Indus Basin (Modified after Quadri and	
Shoaib, 1986)	13
Figure 2.6 Offshore Karachi Depression to thar Platform, Regional Geological	
Correlation	15
Figure 2.7 Structural Setting of Southern Indus Basin and offshore	17
Figure 2.8 Index map of Southern Indus basin. Hachured area on inset map of	
Pakistan indicates Southern Indus basin	19
Figure 3.1 Generalized cross section showing structure across Lower Indus	
Basin (modified from Quadri and Shuaib. 1986)	24
Figure 3.2 Burial history plots for the Shahdapur-1 and the Sakhi-Sarwar-1 wells	26

Figure 3.3 Sembar-Goru/Ghazij Composite Total Petroleum System generalized	
events chart including parts of the Patala-Nammal TPS of the Kohat Potwar area	27
Figure 3.4 Petroleum System Migration Path	28
Figure 4.1 Seismic Data Processing Sequence	34
Figure 5.1 Time Section of Seismic Line BTM-02	44
Figure 5.2 Time section of Sesmic Line BTM-01	45
Figure 5.3 Time Section of Seismic Line BTM-05	46
Figure 5.4 Time Section of Seismic Line BTM-07	47
Figure 5.5 Time Section of Seismic Line BTM-09	48
Figure 5.6 Stratigraphic Well Correlation	50
Figure 5.7 TWT Structure map of Lower Goru	52
Figure 5.8 Depth Structure map of Lower Goru	53
Figure 5.9 TWT Structure map of B Sand	54
Figure 5.10 Depth Structure Map of B Sand	55
Figure 5.11 Synthetic Seismogram of Fateh-01	57
Figure 6.1 Open Hole Well log curves	60
Figure 6.2 Young Modulus Contours of Lower Goru	62
Figure 6.3 Young Modulus Contour map of B Sand	63
Figure 6.4 Shear Modulus Contour map of Lower Goru	64
Figure 6.5 Shear Modulus Contour map of B Sand	65
Figure 6.6 Bulk Modulus Contour map of Lower Goru	67

Figure 6.7 Bulk Modulus Contour map of B Sand	68
Figure 6.8 Depth Vs Sonic and Gamma ray log	70
Figure 6.9 Depth Vs Density	71
Figure 6.10 Depth Vs Porosity	72
Figure 6.11 Depth Versus Vp and Vs	73
Figure 6.12 Vp/Vs Vs Poisson's Ratio	74
Figure 6.13 Lower Goru Vp Contour Map	75
Figure 6.14 Lower Goru Vs Contour Map	76
Figure 6.15 Lower Grou Porosity Contour map	77
Figure 6.16 Lower Goru Poisson's ratio Contour map	78
Figure 6.17 B Sand Vp Contour map	79
Figure 6.18 B Sand Vs Contour map	80
Figure 6.19 B Sand Porosity Contour Map	81
Figure 6.20 B Sand Poisson's ratio contour map	82
Figure 6.21 Hierarchy of the well log interpretation and reservoir characterization	n
(Rider, 2002)	84
Figure 6.22 Calculation of Rmf (Resistivity of mud filtrate)	93
Figure 6.23 Calculation of Rweq (Resistivity of Water Equivalent	94
Figure 6.24 Correction of Rw-eq (Resistivity of Water Equivalent)	95
Figure 6.25 Stacking patterns on Lower Goru Formation (Fateh-01, 2700-3000m) 98
Figure 6.26 Volume of Shale and Effective Porosity with depth	99

Figure 6.27 Petrophysical Results of Fateh-01	100
Figure 6.28 Cross plot between depth and porosity for Fateh-01	101

LIST OF TABLES

Table4.1 Recording parameters of seismic lines	30
Table4.2 Receiver parameters of seismic lines	31
Table4.3 Source parameters of seismic lines	31
Table4.4 Processing steps involved from seismic data acquisition to interpretation	. 32
Table6.1 Available data of logs	59
Table6.2 Zone of interest in Fateh-01	84
Table6.3 Lithology From GR log with 0 Value marking the Sand boundary, 0.5	
Sandy shale and 1.0 indicating Shale contact. (Highlighted zone is our Pay Zone)	87
Table6.4 Description of porosity values	88
Table6.5 Reservoir characteristics of marked zone	98

DEDICATION

Dedicated to our Parents, friends and families Most importantly to our fellow countryman

"Out of the night that covers me, Black as the Pit from pole to pole, I thank whatever gods may be For my unconquerable soul.

In the fell clutch of circumstance I have not winced nor cried aloud. Under the bludgeonings of chance My head is bloody, but unbowed.

Beyond this place of wrath and tears Looms but the Horror of the shade, And yet the menace of the years Finds, and shall find, me unafraid.

It matters not how strait the gate, How charged with punishments the scroll. I am the master of my fate: I am the captain of my soul."

(William Ernest Henley)

ABSTRACT

The seismic interpretation of Bitrisim area was done to identify the faults in the study area, in order to identify the structural and stratigraphic traps which may exist in the block. The faults indicates an extensional regime in the area. These are normal faults and form horst and graben structures. Prominent reflectors are marks and formation are identified on the seismic data. The target horizon was Lower Goru Formation which is the proven reservoir in the area. The basal part of Lower Goru Formation contain substantial organic content which act as source to B Sand of Lower Goru Formation. The TWT and depth structure contour mapping of marked reflectors was done. Traps were identified on contour maps.

The analysis of expected reservoir B Sand is done using rock physics. The relationship between Vp, Vs, Porosity, Density, Depth, Vp/Vs and Elastic Parameters help us understand the changes that resulted in B Sand due to overburden, tectonic activities, transition zones, increase in depth, porosity and due to the presence of fluids in the reservoir.

The rock physics information was correlated with Petrophysics data which was obtained from well Fateh-01. Water resistivity, water saturation and hydrocarbon saturation in the reservoir was established. Using GR log lithology variation with depth chart was constructed. Further using Shale cut-off, water cut-off a net pay zone was established whose thickness came out to be 6m. Further, using the GR log curve, the environment of deposition was noted and hence forth, the stacking pattern was established.

Furthermore, 1D forward modeling of the study area was done only to confirm our Poisson's ration variation trend in our study area and more importantly our reservoir. Synthetic seismogram was also constructed to correlate the lithologies on the seicmic section with the well data in order to have the well control.

ACKNOWLEDGEMENT

With Your prolific praise, O Owner of Honour, I desire to begin A limitless praise, with which You are Pleased

We would like to express our deepest sense of gratitude to our supervisor Ms. Sadia Farooq for her patient guidance, encouragement and excellent advice throughout our thesis work. Our sincere thanks to our university supervisor Ms. Mehwish Butt for her continuous guidance. Our supervisors helped us improve our the course of this thesis work. We would like to thank our friends and families for their support. This thesis work would have not been possible without our teachers, who shared their knowledge and experience with us. We would like to thank Head of Department Dr. Zafar for his support and providing us with facilities to equip us with knowledge and understanding which enabled us to do this work. Finally, we would like to thank everybody who was important to the successful realization of thesis, as well as express our apology that we could not mention each of their names.