

FINAL YEAR PROJECT REPORT

RETAIL STORE DEMAND FORECASTING AND PREDICTION

In fulfillment of the requirement For degree of Bachelors in Information Technology (BS-IT)

By

MUHAMMAD FARHAN	41224
JUNAID AHMED	41220
FAIZAN AKHTAR	41212
ZARYAB ARIF	41242
SYED TALHA GHAYAZ	41237

SUPERVISED

BY DR. G.M SHAIKH

BAHRIA UNIVERSITY (KARACHI CAMPUS)
2019

ACKNOWLEDGEMENTS

We'd like to thank everyone who had been contributing to the successful completion of our project. We'd like to express my gratitude of my research supervisor, Dr Ghulam Muhammad Shaikh of his invaluable advice, guidance and hisenormous patience during the development of the research.

Furthermore, we'd also like to express my gratitude to our parent and friends who had been helping and given me encouragement.

three posters and of ARTMA and All Boost; that a how fore, young as horses.

RETAIL STORE DEMAND FORECASTING AND PREDICTION

ABSTRACT

DECLARATION

Forecasting is a crucial project in retailing. Especially, client-oriented markets which includes seasonality, trends, brief life cycles and a lack of ancient sales statistics which toughen the demanding situations of manufacturing correct forecasting. This overview paper offers trendy methods inside the income forecasting studies with a focal point on tendencies and new product forecasting. In this project we have explored different time series techniques on a relatively simple and clean dataset(collection of data). We had been given 5 years of retail store item sales data and asked to predict 3 months of sales for 5 different items at 10 different stores.

We have conducted a top level view of ongoing advancement in the area of sales prediction & forecasting with the point of interest in developments & new item deals forecast. Traditional determining forecasting techniques face difficulties in generating correct income facts for brand spanking new merchandise and purchaser-orientated items. Specifically, uncertain call for, trends & seasonality, item variability just as a absence of historic can barely be dealt. In lately brought methods, ARIMA forecasting models perform more precisely.

More specifically, we have a few years worth of daily sales data per product in each store, and goal is to forecast the future sales of each item in each store. Forecasting and prediction have been developed using dataset which had been used after training and testing of dataset. Also trend analysis and seasonal decomposition of a dataset(collection of data) for the purpose of checking if the dataset is authentic or not for retail's forecasting. At the end functions have been applied in the forecasting model(ARIMA and XGBoost) that's how forecasting achieved.

So far we've considered breaking down each product-store pair into a single time series, and doing a forecast for each time series, wise models for forecasting multiple time series collection in actual real-world systems. In other words, we used only the historical information of a particular store's sales of the product to forecast the future sales of that product in that store.

TABLE OF CONTENTS

i
ii
vi
vii
iix
ix
ixi
1
1
1
2
2
3
AI 3
5
6
9
10
rosoft 12
ail Sales 13
Version 14
15
15
15
16

	•	
V1	1	1

	3.2	3.2 Data description				
	3.3	Methodol	Methodology			
4	IMPI	IMPLEMENTATION				
	4.1	Import Lil	Import Libraries			
		4.1.1 P	andas	21		
		4.1.2 N	Matplotlib	21		
		4.1.3 S	tats Model	22		
		4.1.4 E	Error Metric	22		
		4.1.5 S	tationart Test	22		
	4.2	Dealing w	Dealing with uncertainty fuller test			
	4.3	ARIMA N	Model	25		
		4.3.1 A	RIMA's Result	25		
	4.4	Fast Dyna	mic Time Wrapping	26		
	4.5	XGBoostt	XGBoostt Model			
5	RESU	RESULTS AND DISUSSIONS				
	5.1	Retrive Da	28			
	5.2	Store Tren	29			
	5.3	Store Tren	Store Trends Conclusion			
	5.4	Item Tren	32			
		5.4.1 D	Petecting Trends	33		
		5.4.2 X	GBoost	36		
	5.5	Added Fea	atures	37		
6	CONCLUSION AND RECOMMENDATIONS 43					
	6.1	6.1 Conclusion				
		6.1.1 F	uture Work	43		
	6.2	ARIMA		45		
		6.2.1 X	GBoost	45		
	6.3	Ways to ca	Ways to capture seasonality			
	6.4	Modeled s	Modeled separately			
	6.5	Comparing	Comparing ARIMA with deep learning			
	6.6	Recomme	Recommendation			