STRUCTURAL EVALUATION OF DANDOT AREA, KALLAR KAHAR, PUNJAB, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Geology

M.OWAIS SHAHZAD KHATTAK HASSAN ALI SHAKEEB UR RAHMAN

Department of Earth and Environmental Sciences Bahria University, Islamabad

2012

ABSTRACT

The balanced and restored structural model in this research suggests that the Salt Range thrust emanating from the basal detachment at crystalline evaporites interface evolved as blind thrust with staircase trajectory. No such faults zones are demarcated along the previously proposed trace of the salt range thrust. The salt range thrust terminates in subsurface with tip line buried under the hanging wall ramp of the anticline or under the resent deposit of Punjab plain. The structure above salt range thrust are developed as a multi bend fault bend fold with a series of anticlines and synclines in the crustal portion, which are partially eroded providing sediments to younger Punjab plain deposits. In subsurface the ramp is present along the preexisting normal fault in the basement which is interpreted in the previous work. In this research in order to justify the well data and actual field characteristics of strata the tapering of layers are interpreted to be present in the subsurface. Local thrust faults are present in the area which are believed to be emanated as a splay faults from the salt range thrust. The normal faults are evolved in response to collapse of competent strata over riding critically above the weak strata. The area is gone through 38% of shortening.

Acknowledgement

First of all we thank to Allah Almighty, Who's magnanimous and chivalrous blessings enabled us to perceive and purse our ambitions and objectives. Special praises to Hazrat Muhammad (S.A.W.W), who is bellwether for whole humanity.

We wish to express our sincere and deep sense of gratitude to our supervisors, Mr. Hummad Ghani, Lecturer, Bahria University Islamabad (BUI), and Mr. Amir Malik, Geophysicist at Landmark Resources (LMKR), who not only suggested the topic but also provided us invaluable guidance, continuous support, advice, and supervision throughout this work.

We are not forgetting our friends especially Arslan Saeed, Kamran Wali, M. Nauman Khan, Umer Zareen, Abdul Shakoor, Abdul Hadi, Abid Jan, Mansoor Ejaz, Ehtisham Javed, Qaiser Farooq and Shahbaz Bahadur who always appreciated, encouraged, and helped us guiding our way ahead in the future endeavors and have remained our greatest moral and spiritual support throughout.

At last but not the least, our family members who deserve regards and special thanks for their moral and financial support throughout our educational career, without their help we might not have been able to achieve our goals. May Allah bless them and give us a chance to serve them better.

CONTENTS

CHAPTER 1 INTRODUCTION

1.1	Location and Accessibility		
1.2	Previous Work		
1.3	Aims and Objectives		
1.4	Interpretation and Its Significance		
1.5	Methodology		
		CHAPTER 2	
		REGIONAL AND TECTONIC FRAMEWORK	
2.1	Introc	luction	6
2.2	Geodynamic Setting of the Indian Plate		6
	2.3.1	Karakorum Block	9
	2.3.2	Main Karakorum Thrust (MKT)	10
	2.3.3	Kohistan Island Arc (K.I.A)	11
	2.3.4	Main Mantle Thrust (MMT)	11
	2.3.5	Northern Deformed Fold and Thrust Belt	12
	2.3.6	Main Boundary Thrust	12
	2.3.7	Southern Deformed Fold and Thrust Belt	13
	2.3.8	Salt Range Thrust (SRT) and Trans Indus Range Thrust (TIRT)	13
	2.3.9	Salt Range	14
2.4	Indo-O	Gangetic Fore-Deep	16
2.5	Tector	nics of the Study Area	16
		CHAPTER 3	
		STRATIGRAPHY OF SALT RANGE AREA	
3.1	Precar	nbrian	18
	3.1.1	Salt Range Formation	18
3.2	Camb	Cambrian	
	3.2.1	Khewra Sandstone	20
	3.2.2	Kussak Formation	21
3.3	Permi	an	23
	3.3.1	Tobra Formation	23
	3.3.2	Dandot Formation	24
	3.3.3	Warchha Formation	25
	3.3.4	Sardhai Formation	26
3.4	Paleoc	cene	26
	3.4.1	Patala Formation	26
3.5	Eocen	e	27
	3.5.1	Nammal Formation	27
	3.5.2	Sakesar limestone	27
	3.5.3	Chorgali Formation	28
3.6	Mioce	ene-Pliocene	29

3.6.1	Murree Formation	29
3.6.2	Kamlial Formation	30
3.6.3	Chinji Formation	30
3.6.4	Nagri Formation	31
3.6.5	Dhok Pathan Formation	33
	CHAPTER 4	
	STRUCTURAL GEOLOGY OF THE A	REA
4.1 Faults		
a) Ga	andhala fault	34
b) Kl	hajurla Fault	35
c) M	ackrach fault	35
a) Dl	hachar anticline	35
b) M	ackrach anticline	36
c) M	ackrach syncline	36
d) Khajurla anticline		
e) Ka	attas syncline	38
4.3 Cross sections		38
4.3.1	Method of section construction	38
4.3.2	Cross Section AB	40
4.3.3	. Section CD	41
4.3.4	. Section EF	41
Conclusions		
References		

Figures

Figure 1.1	Location Map of the study area (Created using Google Imagery).	3			
Figure 1.2.	Generalized Cross section across the western Potwar Plateau and	d the			
west-central Sa	alt Range (Warwick P.D et al 1992)	4			
Figure 1.3	`Major unconformities in the Eocambrian to tertiary sequence of	f salt			
range (Modifie	ed after ER Gee et al. 1989).	4			
Figure 2. 2	Distribution of major thrusts developed during the Himalayan Oro	geny			
(After Sarwar	and Dejong, 1979). Rectangular inset shows the study area.	10			
Figure 2. 3	Tectonic map of north Pakistan, showing major structural fea	tures			
(After Kazmi a	(After Kazmi and Rana, 1982). Rectangular inset shows the study area. 15				
Figure 2.4	Generalized geological map of Salt Range and adjoining area	: the			
highlighted portion shows the Cis-Indus Ranges and location of the study area (after					
Gee, 1989). Rectangular inset shows the study area. 17					
Figure 3. 1	Generalized Stratigraphy of the Study Area (modiefied after ER G	ee et			
al. 1989).		19			
Figure 3.2	Sharp contact of Khewra, Kussak and Warchha Formations expos	ed in			
the study area. 22					
Figure 3.3	Gently dipping Warchha Formation beds of Nilawahan Group.	25			
Figure 3.4	Beds of nodular limestone of Nammal Formations.	28			
Figure 3.5	Cross bedded sandstone of Chinji Formation.	31			
Figure 3.6	Beds of Nagri Formation dipping in the North.	32			

Figure 4.1	Gandhala fault is exposed where it runs in a Nala named Gand	hala
Nala.		34
Figure 4. 2	In background Dhachar Anticline is exposed in north of DA, south	hern
limb of MS an	d its hinge zone is exposed.	36
Figure 4. 3	Back limb of Mackrach Anticline where strata is gently dippin	g to
horizontal.		37
Figure 4. 4	In background Mackrach Syncline is exposed, 60° dipping gently l	imb
of Mackrach A	Anticline.	37
Figure 4. 5	Revised geological map of study area.	39
Figure 4. 7	A 12 km shallow section constructed to understand shallow structu	ires.
		43
Figure 4. 8	Section EF a shallow section for shallow level structural interpretat	tion.
		43
Figure 4. 9	Figure showing extreme south of section EF.	43
Figure 4.10	Balanced cross section showing deposition of formations undeform	ned.