2-D Seismic Interpretation, evaluation of reservoir characteristics and reserve estimation of Bhangali-01 Well, Potwar Sub-basin, Pakistan

A thesis submitted to Bahria University, Islamabad in partial fulfillment the requirement for the degree of BS (Geology)

Muhammad Ghazi Hunain

Muhammad Talha Butt

Sheikh Aqeel Ahmed

Department of Earth and Environmental Sciences

Bahria University, Islamabad

2012

CONTENTS

ABSTRACT	viii
ACKNOWLEDGEMENT	ix

CHAPTER 1

INTRODUCTION

1.1.	Location of the Study Area	1
1.2.	History of Bhangali Oilfield	1
1.3.	Research objective	4
1.4.	Research Methodology	6

CHAPTER 2

TECTONICS AND STRATIGRAPHY OF THE AREA

2.1.	Regional setting	8
2.2.	Tectonics of Potwar Area	10
2.3.	Stratigraphy	15
2.3.1	Borehole stratigraphy	15
2.4.	Geological History of Potwar	18

CHAPTER 3

PETROPHYSICAL ANALYSIS

3.1	Workflow of Petrophysical Analysis	39
3.2	Petrophysical Interpretation	44

CHAPTER 4

ROCK PHYSICS

4.1.	Basic Concept	47
4.2.	Objective of Rock Physics	47
4.3.	Elastic Parameters	48

4.3.1	Young's Modulus	48
4.2.2	Shear Modulus	48
4.3.3	Bulk Modulus	49
4.4.	Well Logs	49
4.4.1.	Calculation of velocities	50
4.5.	Rock Physics analysis	50
4.5.1.	Plot of porosity vs Density	52
4.5.2.	Plot of porosity vs Depth	53
4.5.3.	Vp vs porosity	54
4.5.4.	Depth vs Bulk Modulus	55
4.5.5.	Depth vs Young's modulus	56
4.5.6.	Depth vs Shear Modulus	57

CHAPTER 5

SEISMIC INTERPRETATION

5.1.	Methodology used for Seismic Interpretation	58
5.2.	Regression Analysis on seismic lines	67
5.2.1	Line S-88-12	67
5.2.2.	Line S-88-16	68
5.2.3.	Line S-88-20	69
5.2.4.	Line S-88-24	70
5.2.5.	Line S-88-36	71
5.3.	Contouring	72
5.3.1.	Time contour map	72
5.3.2.	Depth contour map	73

Chapter 6

VOLUMETRIC ESTIMATION

6.1.	Introduction	76
6.2.	Rock volume calculations	79
6.3.	Net pay	80

6.4.	Shape factor	80
6.5.	Porosity and Water Saturation	81
6.6.	Formation Volume Factor	82
6.7.	Volumetric uncertainty	82
6.8.	Results	82
CONC	CLUSION AND DISCUSSION	83
REFERENCES		85
APPENDICES		92

FIGURES

Figure 1.1.	Map showing the location and spread of Bhangali-1 well and	
	seismic lines.	2
Figure 1.2.	Location map of bhangali mining lease.	3
Figure 1.3.	Basemap of the study area.	5
Figure 1.4.	Map showing the well and spread of seismic lines	7
Figure 2.1.	Simplified tectonic map of Himalayan mountains and	
	Tibeten Plateau.	9
Figure 2.2.	Tectonic map of upper Indus Basin	12
Figure 2.3.	Tectonics of the eastern Potwar	13
Figure 2.4.	Cross section across eastern Potwar	14
Figure 2.5.	Stratigraphic distribution in Potwar	17
Figure 2.6.	Potwar during Eocambrian	18
Figure 2.7.	Potwar basin by the end of Cambrian	19
Figure 2.8.	Paleogeographic map of early Cretaceous, approx. 130 Mya.	
	Indian plate by latest Cretaceous, approx.69mya.	20
Figure 2.9.	Potwar by end of Mesozoic	21
Figure 2.10.	Paleogeographic map of the middle Eocene	22
Figure 2.11.	Potwar during Paleocene	22
Figure 2.12.	Potwar by Eocene	23
Figure 2.13.	Potwar during Kamlial and Murree time	24
Figure 2.14.	Potwar during Chinji time	25
Figure 2.15.	Potwar from 10-9 Mya.	26
Figure 2.16.	Potwar from 9-8 Mya.	27
Figure 2.17.	Potwar from 8-7 Mya.	28
Figure 2.18.	Potwar from 7-6 Mya.	29
Figure 2.19.	Potwar from 6-5 Mya.	30
Figure 2.20.	Potwar from 5-4 Mya.	31
Figure 2.21.	Potwar from 4-3 Mya.	32
Figure 2.22.	Potwar from 3-2 Mya.	33

Figure 2.23.	Potwar from 2-1 Mya.	34	
Figure 2.24.	Potwar from 1-0.5 Mya.	35	
Figure 2.25.	Potwar by 0.5 Mya.	36	
Figure 2.26.	Potwar from Quaternary to present	37	
Figure.3.1.	Flow chart showing the workflow of petrophysical analysis	39	
Figure 3.2.	Logs generated through .las files for Chorgali formation	40	
Figure 5.1.	Time Depth Chart	58	
Figure 5.2.	Line S-88-12	60	
Figure 5.3.	Line S-88-16	61	
Figure 5.4.	Line S-88-20	62	
Figure 5.5.	Line S-88-24	63	
Figure 5.6.	Line S-88-36	64	
Figure 5.7.	Two way time contour map for top of Chargali Formation	74	
Figure 5.8.	Depth contour map for top of Chargali Formation	75	
Figure 6.1.	Weighted average effective porosity	77	
Figure 6.2.	Calculation of area for reserve estimation	78	
Figure 6.3.	Calculation of area using graph	79	
Figure 6.4.	Net pay calculation	81	

TABLES

Page

Table 1.1.	Description of seismic lines	4
Table 2.1.	Borehole stratigraphy	16
Table 4.1.	Elastic Parameters	48
Table 4.2.	Calculation relations for velocities	50
Table 5.1.	Fault Location with respect to the vibroseis on different lines	72
Table 6.1.	Volumetric calculation results	82

GRAPHS

Page

Graph 3.1.	Plots of volume of shale and neutron porosity vs. depth	44
Graph 3.2.	Plots of sonic porosity and effective porosity vs. depth.	45
Graph 3.3.	Plots of Sw and Sh vs. depth	46
Graph 4.1.	Vp and Vs vs. depth	50
Graph 4.2.	Porosity vs. density plot	52
Graph 4.3.	Depth vs Porosity plot	53
Graph 4.4.	Vp vs Porosity plot	54
Graph 4.5.	Plot of depth vs Bulk Modulus	55
Graph 4.6.	Plot of depth vs. Young's Modulus	56
Graph 4.7.	Plot of depth vs Shear Modulus	57
Graph 5.1.	Time depth Chart	58
Graph 5.2.	Regression analysis graph for line S-88-12	67
Graph 5.3.	Regression analysis graph for line S-88-16	68
Graph 5.4.	Regression analysis graph for line S-88-20	69
Graph 5.5.	Regression analysis graph for line S-88-24	70
Graph 5.6.	Regression analysis graph for line S-88-36	71

ABSTRACT

Bhangali oilfield is located approximately 50 km south-east of Islamabad in Gujjarkhan District, Rawalpindi. Bhangali field was discovered in 1989 and started production from Bhangali-01 in October 1989. The purpose of this dissertation is to evaluate the reserve potential of Bangali -01 well through integrated approach of petrophysical, rock physics and seismic structural analysis. The well and seismic data of Bhangali-01 are used in the present research to evaluate petrophysical and mechanical properties, volumetric estimation of reservoir and to understand subsurface structural style. For petrophysical analysis, Chorgali formation is marked as the zone of interest (ZOI) because of its lithology and productivity of hydrocarbon in the surrounding oil fields. Neuralog software is used for calibrating the logs and accurate determination of log (Gamma ray, Neutron, Density, Resistivity, Spontaneous potential and Sonic) values. The parameters calculated using these logs are effective porosity 18%, saturation of water (S_w) 17% and saturation of hydrocarbon (S_h) 83% for Bhangali-01 well. Sonic log is used for calculating Bulk modulus, Shear modulus and Young's modulus to evaluate the mechanical properties of zone of interest. The trends of values of all the modulus shows a positive relation with petrophysical parameters. In the zone of interest the values of Bulk modulus, Shear modulus and Young's modulus decreases shows an inverse relation with the petrophysical parameters and provides an evidence of the presence of a fluid in the zone of interest. The sub-surface structural style interpreted from the seismic data shows that the deformation in the area is the result of thrust tectonics. Forethrust breaking foreland ward are present in the sub-surface. Back thrust are emanating from there forethrust forming a pop-up structures. Bhangali oil field is interpreted as a pop-up structure bounded between forethrust and backthrust making it favorable for the exploitation of hydrocarbon. Time and Depth contour maps are generated for the Chorgali (ZOI) formation to interpret its three dimensional geometry in sub-surface and its integration with petrophysical parameters for the reserve estimation. The area of ZOI is calculated by using manual techniques on Depth contour map which 2965.2 acres and the total net pay is of 40 ft are used for the calculation of reserves which comes out as 4.74 mmbl. The calculated reserve values for the reservoir are sufficient enough to make it commercially exploitable.

ACKNOWLEDGMENT

Our first praise is towards Allah Almighty, the most Beneficent and Merciful, on whom ultimately we depend for sustenance and guidance. We thank Allah for giving us strength, ability and understanding, without which we wouldn't have been able to complete our project.

We are especially grateful to our external supervisor Mr. Irfan Muhammad (Assistant Geologist, MOL) for his supervision and guidance. We also acknowledge the support from our internal supervisor Mr. Hammad Ghani (Lecturer, Bahria University). We also owe many thanks to our external Mr. Mohsin Munir for his invaluable help which ultimately contributed in the success of our research work.

Last but not the least, Dr. Muhammad Zafar Head of Department, Earth and Environmental Sciences, who provided us with the opportunity to work on our particular project. We also reimburse our gratitude to the whole faculty for facilitating us to take initiative and develop our skills in accordance with the activities ongoing in the industry.

We also acknowledge the motivation, love and guidance of our parents, without whom we couldn't have reached our objectives.