PETROPHYSICAL AND GEOMECHANICAL PROPERTIES FOR MESOZOIC STRATA IN NORTHERN PART OF PUNJAB PLATFORM, CENTRAL INDUS BASIN, PAKISTAN

By

HASAN ALI

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

ABSTRACT

Mesozoic age formations from northern part of Punjab Platform have been evaluated for their source and reservoir rock potential. Where, Chichali Formation is a considered source rock having the same lithology, age and environment of deposition as that of Sember Formation. Lumshiwal and Samana Suk Formations of Cretaceous and Jurassic age respectively, have been evaluated for their reservoir potential and lithological investigation.

To carry out the research work Well logs have been utilized. Petrophysical and geomechanical techniques have been utilized for identifying behaviour in shales of Chichali Formation while petrophysical analysis of reservoir rocks have been carried out. Using Passey's DLogR method, Fair to Good amount of TOC (Total Organic Carbon) has been identified in Chichali Formation which increases towards north while sand content is increasing towards south in Punjab Platform. Dispersed origin of grain content increases towards south and a higher shale play is observed in north of Punjab Platform with more allogeneic clays. Geomechanical properties also suggests a more ductile behaviour of Chichali Formation towards north as poison's ratio increases with increasing clay rich lithology which suggests a high amount of hydro fracking will be required to go directly for shale reservoir. Lumshiwal and Samana Suk Formations of Mesozoic age acts as reservoir rocks with a maximum of 20% and 30% effective porosities respectively. Chichali Formation further need to be studied based on core cuttings for a clear picture in the area with its potential to production as it already has a good amount of TOC shows.

ACKNOWLEDGEMENTS

All praises to Al-Mighty Allah the compassionate and benevolent who blessed me with the ability and motivation for completion of my work.

I am very grateful to the respected supervisor Mr Muhammad Raiees, E&ES, Bahria University for his cooperation and continuous help in my work. I am very indebted to the co-supervisor Mr Muhammad Saqib Hameed, Senior Geoscientist of LMK Resources Pvt. Ltd for his guidance, dedication, time and making possible the completion of this research within time.

I am also thankful to the Head of Department, Prof. Dr. Tehseenullah Khan for his kind attention and guidance.

I am extremely thankful to my parents, family members, friends and teachers for their consistent encouragement, belief in my abilities. I am also grateful to my friends Uzair Ahmad, Muhammad Kamran, Muhammad Nofal Munir, Muhammad Rizwan and Tassavur Hayyat for their continuous support and assistance throughout the research work.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	vi
TABLES	xi

CHAPTER 1

INTRODUCTION

1.1	Introduction	1
1.2	Introduction to study area	2
1.3	Research objective	3
1.4	Methodology	4
1.5	Data availability	4
1.5.1	Well data	5

CHAPTER 2

TECTONOSTRATIGRAPHY

2.1	Tectonics of Pakistan	6
2.2	Basins of Pakistan	6
2.2.1	Central Indus Basin	7
2.2.1.1	Punjab Platform	8
2.3	Generalized stratigraphy of Punjab Platform	8
2.3.1	Precambrian	8
2.3.2	Cambrian	9
2.3.3	Triassic/Jurassic	9
2.3.4	Cretaceous	9
2.3.5	Palaeocene/Eocene/Miocene/Pliocene	9
2.3.6	Recent deposits	9
2.4	Borehole stratigraphy	10
2.4.1	Nagri Formation	11
2.4.2	Chinji Formation	11
2.4.3	Chorgali Formation	12
2.4.4	Sakesar Formation	12
2.4.5	Nammal Formation	12

2.4.6	Dungan Formation	12
2.4.7	Lumshiwal Formation	13
2.4.8	Chichali Formation	13
2.4.9	Samana Suk Formation	13

CHAPTER NO 3

LITERAURE REVEW

3.1	Literature Review	14
	CHAPTER 4	
	CONVENTIONAL WELL LOG INTERPRETATION	
4.1	Introduction	18
4.1.1	Basic logging tools and there measurements	19
4.1.1.1	Gamma ray log	19
4.1.1.2	Resistivity log	19
4.1.1.3	Density log	20
4.1.1.4	Sonic log	20
4.1.1.5	Neutron log	21
4.1.2	Passey's DlogR (\triangle logR) method	21
4.2	Discussion on petrophysical results	22
4.2.1	Chichali Formation	22
4.2.1.1	Source rock interpretation and Passey's DlogR method	23
4.2.1.2	RHOB v/s NPHI crossplots for lithology identification	26
4.2.1.3	Clay mineral origin	28
4.2.1.4	Identification of shale play in source	31
4.3	Reservoir evaluation	32
4.3.1	Lumshiwal Formation	32
4.3.1.1	Wireline log Interpretation of Lumshiwal Formation	33
4.3.1.2	RHOB v/s NPHI crossplots for lithology identification	36
4.3.1.3	Pores occupying hydrocarbons	38
4.3.1.4	Bulk water in Lumshiwal Formation	40
4.3.2	Samana Suk Formation	41
4.3.2.1	Wireline log interpretation of Samana Suk Formation	42
4.3.2.2	RHOB v/s NPHI crossplots for lithology identification	46

4.3.2.3	Pores occupying hydrocarbons	48
4.3.2.4	Bulk water in Samana Suk Formation	49
	CHAPTER 5	
ROCK PHY	YSICS AND GEOMECHANICAL INTERPRETATION OF SO	URCE
	ROCK	
5.1	Introduction	51
5.1.1	Elastic moduli	51
5.2	Rock physics interpretation	52
5.2.1	Mineralogy, porosity and brittleness in Chichali shale	52
5.2.2	Compaction effects over porosities for shale	59
5.2.3	Effective porosities / fracturing OGIP and recovery factor (RF)	64
5.2.4	Elastic parameters with lithology, porosity and fluid effects	66
CONCLUSIONS		79
REFERENCES		80

FIGURES

Figure 1.1	Location map of study area.	2
Figure 1.2	Methodology adopted for research work.	4
Figure 2.1	Basin division of Pakistan.	7
Figure 2.2	Generalized stratigraphy of Punjab Platform.	10
Figure 3.1	Relation between LOM and vitrinite reflectance (VR).	14
Figure 3.2	Factors influencing elastic parameters.	16
Figure 3.3	Schematics for different clay orientations.	16
Figure 3.4	LMR crossplots for identification of high OGIP and Rf areas	
	along with Effective porosities.	17
Figure 4.1	TOC by Passey's DlogR for Saro-01 well	24
Figure 4.2	TOC by Passey's DlogR for Kamiab-01 well	25
Figure 4.3	TOC by Passey's DlogR for Budhuana-01 well.	26
Figure 4.4	Crossplot for RHOB v/s NPHI of Chichali Formation for Saro-	
	01 well.	27
Figure 4.5	Crossplot for RHOB v/s NPHI of Chichali Formation for	
	Kamiab-01 well.	27
Figure 4.6	Crossplot for RHOB v/s NPHI of Chichali Formation for	
	Budhuana-01 well.	28
Figure 4.7	Crossplot between effective porosity (PHIE) and volume of shale	
	(Vshl) showing clay mineral origin for Saro-01 well.	29
Figure 4.8	Crossplot between effective porosity (PHIE) and volume of shale	
	(Vshl) showing clay mineral origin for Kamiab-01 well.	30
Figure 4.9	Crossplot between Effective porosity (PHIE) and volume of	
	shale (Vshl) showing Clay mineral origin for Budhuana-01 well.	30
Figure 4.10	Sonic (DT) v/s Resistivity (IND) Crossplot for Shaly play	
-	identification of Saro-01 well.	31
Figure 4.11	Sonic (DT) v/s Resistivity (IND) Crossplot for Shaly play	
-	identification of Kamiab-01 well	32
Figure 4.12	Sonic (DT) v/s Resistivity (IND) Crossplot for Shaly play	
-	identification of Budhuana-01 well.	33
Figure 4.13	Wireline log interpretation of Lumshiwal Formation for Saro-01	
-	well.	34

Figure 4.14	Wireline log interpretation of Lumshiwal Formation for Kamiab-	
	01 well.	35
Figure 4.15	Wireline log interpretation of Lumshiwal Formation for	
	Budhuana-01 well.	36
Figure 4.16	Crossplot for RHOB v/s NPHI of Lumshiwal Formation for	
	Saro-01 well.	37
Figure 4.17	Crossplot for RHOB v/s NPHI of Lumshiwal Formation for	
	Kamiab-01 well.	37
Figure 4.18	Crossplot for RHOB v/s NPHI of Lumshiwal Formation for	
	Budhuana-01 well.	38
Figure 4.19	Pore bound hydrocarbons (HCPV) v/s Depth in Lumshiwal	
	Formation of Saro-01 well.	39
Figure 4.20	Pore bound hydrocarbons (HCPV) v/s Depth in Lumshiwal	
	Formation of Kamiab-01 well.	39
Figure 4.21	Pore bound hydrocarbons (HCPV) v/s Depth in Lumshiwal	
	Formation of Budhuana-01 well.	40
Figure 4.22	Bulk water volume v/s depth in Lumshiwal Formation at Saro-	
	01 well.	40
Figure 4.23	Bulk Water volume v/s depth in Lumshiwal Formation at	
	Kamiab-01 well.	41
Figure 4.24	Bulk Water volume v/s depth in Lumshiwal Formation at	
	Budhuana-01 well.	41
Figure 4.25	Wireline log interpretation of Samana Suk Formation for Saro-	
	01 well.	43
Figure 4.26	Wireline log interpretation of Samana Suk Formation for	
	Kamiab-01 well.	44
Figure 4.27	Wireline log interpretation of Samana Suk Formation for	
	Budhuana-01 well.	45
Figure 4.28	Crossplot for RHOB v/s NPHI of Samana Suk Formation for	
	Saro-01 well.	46
Figure 4.29	Crossplot for RHOB v/s NPHI of Samana Suk Formation for	
	Kamiab-01 well.	46

Figure 4.30	Crossplot for RHOB v/s NPHI of Samana Suk Formation for	
	Budhuana-01 well.	47
Figure 4.31	Pore bound hydrocarbons (HCPV) v/s depth in Samana Suk	
	Formation of Saro-01.	47
Figure 4.32	Pore bound hydrocarbons (HCPV) v/s Depth in Samana Suk	
	Formation of Kamiab-01.	48
Figure 4.33	Pore bound hydrocarbons (HCPV) v/s Depth in Samana Suk	
	Formation of Budhuana-01 well.	48
Figure 4.34	Bulk Water volume v/s depth in Samana Suk at Saro-01 well.	49
Figure 4.35	Bulk water volume v/s depth in Samana Suk Formation at	
	Kamiab-01 well.	49
Figure 4.36	Bulk water volume v/s depth in Samana Suk Formation at	
	Budhuana-01 well.	50
Figure 5.1	Rock physics templates showing the effect of mineralogical	
	mixtures and porosity for Saro-01 well on the cross-plots of (a)Ip	
	versus Vp/Vs , (b) E v/s v, (c) Mu_rho v/s Lambda_rho	55
Figure 5.2	Rock physics templates showing the effect of mineralogical	
	mixtures and porosity for Kamiab-01 well on the cross-plots of	
	(a) Ip versus Vp/Vs , (b) E v/s v, (c) Mu_rho v/s Lambda_rho	57
Figure 5.3	Rock physics templates showing the effect of mineralogical	
	mixtures and porosity for Budhuana-01 well on the cross-plots	
	of (a) Ip versus Vp/Vs , (b) E v/s v, (c) Mu_rho v/s Lambda_rho	59
Figure 5.4	Cross-plots of Young's Modulus (E) v/s Poisson Ratio (v),	
	showing the degree of clay lamination effects for Saro-01 well,	
	(a) 0% clay lamination. (b) 50% clay lamination. (c) 100% clay	
	lamination.	61
Figure 5.5	Cross-plots of Young's Modulus (E) v/s Poisson Ratio (v),	
	showing the degree of clay lamination effects for Kamiab-01	
	well, (a) 0% clay lamination. (b) 50% clay lamination. (c) 100%	
	clay lamination.	62
Figure 5.6	Cross-plots of Young's Modulus (E) v/s Poisson Ratio (v),	
	showing the degree of clay lamination effects for Budhuana-01	

well, (a) 0% clay lamination. (b) 50% clay lamination. (c) 100% 64 clay lamination.

Figure 5.7	LMR cross plot between Mu_rho v/s Lambda_rho for Saro-01	
	well showing effective porosity and formation fracability	65
Figure 5.8	LMR cross plot between Mu_rho v/s Lambda_rho for Kamiab-	
	01 well showing effective porosity and formation fracability	65
Figure 5.9	LMR cross plot between Mu_rho v/s Lambda_rho for Budhuana-	
	01 well showing effective porosity and formation fracability.	66
Figure 5.10	Mineral mixtures of Saro-01 well based on (a) Lambda v/s Mu	
	(b) Lambda_rho v/s Mu_rho.	67
Figure 5.11	Porosity effects on elastic moduli of Saro-01 well (a) Lambda v/s	
	Mu (b) Lambda_rho v/s Mu_rho.	68
Figure 5.12	Porosity effects for fluid filled minerals on elastic moduli of	
	Saro-01 (a) Lambda v/s Mu (b) Lambda_rho v/s Mu_rho.	69
Figure 5.13	Composite display of lithology, porosity and fluid effects of	
	Saro-01 well (a) Lambda v/s Mu (b) Lambda_rho v/s Mu_rho.	70
Figure 5.14	Mineral mixtures of Kamiab-01 well based on (a) Lambda v/s	
	Mu (b) Lambda_rho v/s Mu_rho.	71
Figure 5.15	Porosity effects on elastic moduli of Kamiab-01 well (a) Lambda	
	v/s Mu (b) Lambda_rho v/s Mu_rho.	72
Figure 5.16	Porosity effects for fluid filled minerals on elastic moduli in	
	Kamiab-01 well (a) Lambda v/s Mu (b) Lambda_rho v/s	
	Mu_rho.	73
Figure 5.17	Composite display of lithology, porosity and fluid effects in	
	Kamiab-01 well (a) Lambda v/s Mu (b) Lambda_rho v/s	
	Mu_rho.	74
Figure 5.18	Mineral mixtures of Buduhana-01 well based on (a) Lambda v/s	
	Mu (b) Lambda_rho v/s Mu_rho	75
Figure 5.19	Porosity effects on elastic moduli in Budhuana-01 well (a)	
	Lambda v/s Mu (b) Lambda_rho v/s Mu_rho	76
Figure 5.20	Porosity effects for fluid filled minerals on elastic moduli in	
	Budhuana-01 well (a) Lambda v/s Mu (b) Lambda_rho v/s	
	Mu_rho	77

Figure 5.21 Composite display of lithology, porosity and fluid effects in Budhuana-01 well (a) Lambda v/s Mu (b) Lambda_rho v/s Mu_rho 78

TABLES

Table 1.1	Well data acquired for research	5
Table 2.1	Stratigraphy encountered in wells	11
Table 3.1	Comparison of actually measured and calculated TOC values.	15