MECHANICAL PROPERTIES AND PETROGRAPHIC CHARACTERISTICS OF LOCKHART LIMESTONE, SHAH ALLA DITTA, PAKISTAN

A thesis submitted to Bahria University Islamabad in partial fulfillment of the requirement for the degree of BS in Geology

 \mathbf{BY}

Muhammad Ali Javed

Muhammad Ali Khalid

Muiz Ali

Department of Earth and Environmental Sciences

Bahria University, Islamabad, Pakistan

2019

ABSTRACT

The objectives of this study was to investigate the petrographic characteristics and mechanical properties of Lockhart Limestone exposed in Shah Alla Ditta, Islamabad, Pakistan. For each test, four bulk samples were taken from the study area. Mechanical tests were carried out which includes uniaxial compressive strength test (UCS) and schmidt rebound hammer (SRH) test. Petrographic studies were also carried out on 4 samples of Lockhart Limestone. By petrographic study, calcite and bioclast were found as the major constituents of Lockhart Limestone. The rocks were classified into wackestone and mudstone according to Dunham classification. Comparative study of UCS with calcite and bioclast showed direct relation with calcite content and inverse relation with bioclast. Regression analysis was also performed to find out linear relationship between UCS and SRH. A strong coefficient of correlation of (R² = 0.8133) was found between these two mechanical properties. The regression equation can be used in order to predict UCS of Lockhart Limestone using the value of SRH, as SRH is relatively cheaper and less time-consuming test.

ACKNOWLEDGEMENTS

All praises to Almighty Allah, the merciful and the beneficent. We would like to express our special thanks to our supervisor Mr. Masood Anwar (Senior lecturer Bahria University Islamabad) for the encouragement and support in each step during the entire research. We would also like to thank the supporting staff of Bahira University Islamabad for providing us the required tools and the access to petrographic lab.

We would also like to thank our parents and friends who helped us a lot in finalizing this project within the limited time frame.

CONTENTS

4	ABSTRACT	i
	ACKNOWLEDGEMENTS	ii
(CONTENTS	iii
	FIGURES	v
,	TABLES	vi
	ABBREVIATIONS	vii
	CHAPTER 1	
	INTRODUCTION	
1.1	Introduction	1
1.2	Engineering Geology and Its applications	2
1.3	Limestone and its importance in Engineering Geology	2
1.4	Introduction to study area	3
1.5	Location and accessibility	4
1.6	Aims and objectives	4
1.7	Methodology	5
	CHAPTER 2	
	TECTONIC SETTING OF PAKISTAN	
2.1	Tectonic setting	6
2.1.1	Main Boundary Thrust (MBT)	6
2.1.2	Tectonic setting of study area	7
2.2	Generalized stratigraphy of study area	8

CHAPTER 3

PETROGRAPHICAL ANALYSIS

3.1	Petrography	9
3.2	Preparation of thin section	9
3.2.1	Petrographic study of Lockhart Limestone	10
3.3	Observations	10
3.4	Petrographic studies	12
3.5	Petrographic composition of Lockhart Limestone	14
	CHAPTER 4	
	GEO-MECHANICAL PROPERTIES	
4.1	Introduction	15
4.2	Uniaxial compressive test (UCS)	16
4.2.1	Rock strength parameters based on UCS	16
4.2.2	UCS of Lockhart Limestone	17
4.3	Schmidt rebound hammer test.	18
4.3.1	Schmidt rebound hammer test of Lockhart Limestone	19
	CHAPTER 5	
	RESULTS AND DISCUSSIONS	
5.1	Relationship between UCS and Calcite	20
5.2	Relation between UCS and bioclast	21
5.3	Linear regression analysis of Schmidt Rebound Hammer and UCS	22
CONCLUSIONS		23
RECOMMENDATIONS		24
REFERENCES		25

FIGURESs

Figure 1. 1. Location and accessibility of Lockhart formation	
Shah Alla Ditta	4
Figure 1. 2. Methodology	5
Figure 2. 1. Tectonic setting of study area	7
Figure 2. 2. Stratigraphy of study area	8
Figure 3.1. Showing microphotographic details of Lockhart Limestone	
(Calcite, and bioclast in A, B and C)	12
Figure 3.2. Showing microphotographic details of Lockhart Limestone	
(Calcite, Hematite and bioclast in D, E and F)	13
Figure 3.3. Average composition of Lockhart Limestone	14
Figure 4. 1.a Core cutting machine	15
Figure 4. 1.b Uniaxial compressive strength test machine	15
Figure 4.2.a Schmidt rebound hammer;	18
Figure 4.2.b procedure	18
Figure 5. 1. Relation of UCS with calcite in Lockhart limestone	20
Figure 5. 2. Relationship of UCS with bioclast in Lockhart limestone	21
Figure 5. 3. Regression analysis of UCS versus Schmidt rebound hammer	22

TABLES

Table 3.1. Rock classification and mineralogical composition of Lockhart	
limestone	10
Table 3. 2. Classification of limestone according to Dunham (1962)	11
Table 4. 1. Description of rock strength (ISRM, 1980)	17
Table 4. 2. Uniaxial compressive strength values of Lockhart limestone.	17
Table 4. 3. Schmidt rebound hammer values of Lockhart limestone	19

ABBREVIATIONS

ASTM American Society for Testing and Materials,

CS Compressive strength

ISRM International Society for Rock Mechanics

MBT Main Boundary Thrust

MKT Main Karakoram Thrust

MMT Main Mantle Thrust

SRH Schmidt Rebound Hammer

UCS Uniaxial Compressive Strength