Comparison of Bioremediation Strategies for Treatment of Oil Sludge Contaminated Soil

By

MUHAMMAD AREEB ZAMAN MALIK AREEBA TANVEER NABEEL WAHEED

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

Comparison of Bioremediation Strategies for Treatment of Oil Sludge Contaminated Soil

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Environmental Sciences

Umair Ullah Jamil

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

Abstract

Petro chemical hydrocarbons are considered to be the most significant environmental pollutants and are need to be improved. In the present study the biodegradation of petroleum hydrocarbons was achieved under shake flask conditions using an efficient bacterial consortium that was isolated and identified in Environmental Sciences laboratory of Bahria University Islamabad Campus. The consortium was tested for bio surfactant production before being employed for the process of bio degradation. Bio remediation techniques (natural attenuation, bio stimulation and bio augmentation) were assessed with 6% oily sludge concentration in open microcosms over the period of 6 weeks. The percentage removal and petro chemical degradation was evaluated using UV-visible spectrophotometer and Fourier Transform infrared Spectroscopy. Addition of heterotrophic bacteria and nutrients in different concentrations demonstrated higher degradation rate of total petroleum hydrocarbons (TPH) than those of natural attenuation treatments. The bacterial consortium achieved 79.06% degradation of petroleum hydrocarbon in Natural attenuation, 80.62% in bio stimulation and 80.93% in bio augmentation. FTIR spectra of hydrocarbons before and after biodegradation experiments also revealed significant changes in the characteristic peaks, making certain bonds.

Dedication

Dedicated to ALLAH Almighty who made us and we are for HIM. Prophet (S.A.W.W) who showed us the righteous way and to our beloved parents whose love and Prayers have been the source of constant strength and encouragement for me.

Acknowledgements

All the acclamations and appreciations are for Almighty Allah, the compassionate and benevolent that Knows better the mysteries and secrets of the universe and His Holy Prophet Muhammad (S.A.W.W) who has guided his Ummah to seek knowledge from cradle to grave and enabled us to win honor of life and whose teachings has served as a beacon of light for the humanity in the hours of despair and darkness.

We offer our cordial and profound thanks to Professor Dr. Muhammad Zafar, Head of Department of Earth & Environmental Sciences, and Bahria University for providing us all the possible research facilities during the present study. We are highly grateful to our research supervisor, Syed Umair Ullah Jamil for his constant guidance, kind supervision, fruitful suggestions and inspiration throughout the entire period of this study and feel lucky that we availed the opportunity to work with him. We will always pray for his long life and health for coming research students.

We express our profound gratitude to our teachers in this research work. Thanks to our parents and siblings for their love, good wishes and prayers and their encouragement by all means was a great support to us. We are indeed obliged to our all friends and we will remain forever in debt for their much needed support.

TABLE OF CONTENT

ABSTRACT	i
DEDICATION	ii
ACKNOWLODGEMENT	iii
CONTENTS	iv
FIGURES	vii
TABLES	viii
ABREVIATIONS	ix

CHAPTER 1

INTRODUCTION

1.1	Crude Oil	2
1.2	General Composition of Crude Oil	2
1.3	Oily Sludge and its Composition	2
1.4	Some Vital Composition Present in Oil Refinery Sludge	3
1.5	Naphthalene	3
1.6	Phenanthrene	4
1.7	Pyrene	4
1.8	Fluorine	5
1.9	Benzo[a] pyrene	5
1.10	Anthracene	5
1.11	Different PAHs	5
1.12	Oily Sludge in the Environment	6
1.13	Oil Spills	7
1.14	Remediation	7
1.15	Treatment Technologies and disposal of Oil Sludge	8
1.16	Biodegradation	8
1.16.1	In situ Bioremediation	10
1.16.2	Ex-situ Bioremediation	11
1.17	Microbial degradation of Oil Sludge	11

1.18	Variable Influencing the Biodegradation Systems	13
1.19	Impacts of pH	13
1.20	Nutrients	13
1.21	Oxygen	14
1.22	Water Action/Dampness	14
1.23	Temperature	15
1.24	Salinity	15
1.25	Role of Microorganisms in biodegradation of Pollutants	15
1.26	Some Biodegradable Pollutants	16
1.27	Objectives	17

CHAPTER 2

MATERIALS AND METHODS

2.1	Sample Location	18
2.2	Sample Collection	18
2.3	Isolation of Oily Sludge degrading bacteria	19
2.4	Inoculum Preparation	19
2.5	Lipase Activity and Bio Surfactant	19
2.6	Bio Remediation Experiment	19
2.7	Experiment Design	19
2.8	Mineral Salt Media	20
2.9	Solvent Extraction Technique	20
2.10	Biodegradation Analysis	21
2.10.1	Total Hydrocarbon Degrading Microorganisms	21
2.10.2	UV Visible Spectroscopy	21
2.10.3	Fourier Transformed Infrared Spectroscopy	21

CHAPTER 3

RESULTS AND DISCUSSIONS

3.1	Lipase Activity	22
3.2	Viable Cell Count	23
3.2.1	cfu/ml (x10 ⁶)	23
3.3	UV spectroscopy	27
3.3.1	Natural Attenuation	28
3.3.2	Bio Stimulation	28
3.3.3	Bio Augmentation	28
3.4	Fourier Transformed Infrared and Spectroscopy	29
3.4.1	Control Sample	29
3.4.2	Natural Attenuation	29
3.4.3	Bio Stimulation	30
3.4.4	Bio Augmentation	31
CON	CLUSION	34
RECOMMENDATIONS		34
REFERENCES		35

List of Figures

Figure 1	Role of Microorganisms in Biodegradation	16
Figure 2	Sampling Site	18
Figure 3	Zone of Hydrolysis in lipase activity	22
Figure 4	Total hydrocarbon degrading bacteria over the period of 6 weeks	24
Figure 5	Biodegradation of TPH in MSM	28
Figure 6	FTIR Spectroscopy of Control Sample	29
Figure 7	FTIR Spectroscopy of Natural Attenuation	30
Figure 8	FTIR Spectroscopy of Bio Stimulation	31
Figure 9	FTIR Spectroscopy of Bio Augmentation	32

List of Tables

Table 1	Composition of Mineral Salt Medium	20
Table 2	Total Hydrocarbon Degrading Bacteria	23
Table 3	UV-Vis Spectroscopy (410nm)	27
Table 4	Percentage of Biodegradation of TPH over the period of 6 weeks	27

ABBREVIATIONS

ТРН	Total Petroleum Hydrocarbons
FTIR	Fourier Transformed Infrared Spectroscopy
PAHs	Polyclinic Aromatic Hydrocarbons
PAHs	Polyclinic Fragrant Hydrocarbons
US	United States
EPA	Environmental Protection Agency
VOCS	Volatile Organic Hydrocarbons
SVOCS	Semi Volatile Organic Hydrocarbons
CNS	Carbon Nitrogen Sulphur
PCBS	Polychlorinated Biphenyls
рН	Power of Hydrogen ion concentration
GEM	Genetically Engineered Microorganisms
ATP	Adenosine Triphosphate
AOC	Attock Oil Company Limited
ARL	Attock Refinery Limited
NA	Natural Attenuation
BA	Bio-Augmentation
BS	Bio-Stimulation
MSM	Minerals Salt Medium
CFU	Colony Forming Units
UV/VIS	Ultra Violet-Visible
NIR	Near Infrared
UEO	Used Engine Oil
DO	Diesel Oil
Fig	Figure
Kh ₂ Po ₄	Di hydrogen Potassium Phosphate
K2hP04	Dipotassium Hydrogen Phosphate
MgS04.7H2O	Magnesium Sulphate
ZnSo4.7H2O	Zinc Sulphate
FeSo4.7H2O	Ferrous Sulphate
MnSo4.7H2O	Manganese Sulphate
NH4NO3	Ammonium Nitrate

CuSo ₄ .7H ₂ O	Copper Sulphate
H ₂ O	Water
Spp	Specie
CO ₂	Carbon dioxide
mL	milliliter
cm ⁻¹	Per Centimeter
°C	Degree Celsius
rpm	Revolution Per Minute
0	Oxygen
CNP	Carbon Nitrogen Phosphorus
L	Liter
nm	Nano Meter
CHNS	Carbon Hydrogen Nitrogen Sulphur
v/v	Volume by Volume
w/w	weight by weight