PETROLOGY OF THE CHILAS COMPLEX IN THE KINERGAH AREA, CHILAS, GILGIT-BALTISTAN, PAKISTAN

By

WAQAS JAVAID DANIAL AMIN MUNEEB ARSHAD

Department Of Earth and Environmental Sciences Bahria University, Islamabad

2016

PETROLOGY OF THE CHILAS COMPLEX IN THE KINERGAH AREA, CHILAS, GILGIT-BALTISTAN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S. in Geology

WAQAS JAVAID DANIAL AMIN MUNEEB ARSHAD

Department Of Earth and Environmental Sciences Bahria University, Islamabad

2016

ABSTRACT

The Chilas Complex is 40 km wide plutonic body present at the center of Kohistan Island Arc sequence extending up to 300 km in east-west direction. The Kohistan arc terrane has been considered to form due to the northward subduction of the Neo-Tethyan oceanic lithosphere plate under the Eurasian plate during Cretaceous time. The rocks of Chilas complex are exposed in Kiner Gah, east of Chilas town. These rocks include gabbro, gabbronorite, tonalite, pyroxene quartz diorite, amphibolites and granites. Field studies suggest that the complex has intrusive lower contact with the Thak amphibolite and has a direct upper contact with granitic rocks of Kohistan batholith. This research focuses on petrographic and geochemical study of Chilas complex rocks to find out its origin. Major and trace elements study signify that these rocks to belong to a one common magma source composition. The primary magma seems to be basaltic in finally fractionating to granites. Negative Nb and P anomaly in the rocks of the Kiner Gah area represented by spider diagrams indicate that the melt was derived from metasomatized mantle, probably developed in island arc type back arc environment. Kyanite bearing garnet tonalite, which is first time reported from the Chilas complex in this research also serves as the evidence that the melt was derived from metasomatized mantle.

ACKNOWLEDGEMENTS

We are deeply indebted to many people for their invaluable contributions in this research study for their active encouragement, unconditional support and heartedly co-operation.

In this regard, we would like to express our deepest sense of gratitude to our supervisor Prof. Dr. Tahseenullah Khan Bangash for his expert guidance, encouragement and advice throughout the study. We are also thankful for him trusting our own working style and giving us a free hand to progress through this venture. Without his guidance and positive criticism this endeavor would not have been possible.

We owe a special thanks to Mr. Saqib Mehmood, Assistant Professor, Department of Earth and Environmental Sciences, Bahria University for their expert opinion and guidance. We also wish to thank Dr. Muhammad Zafar, Head of Department of Earth and Environmental Sciences, Bahria University, Islamabad for his co-operation and guidance.

We would like to express our sincere gratitude to Mr. Ateeq Ur Rehman and the localites of Chilas who helped us during the field work. We would also like to thank Dr. Irfan of NCEG, Peshawar for giving us the opportunity to avail their lab facilities.

Last but not the least we thank our families for their prayers, honest sacrifices and absolute understanding. We thank them for being the source of constant encouragement which has given us the strength to undertake this very task in the first place.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	xii

CHAPTER 1

INTRODUCTION

1.1.	General Statement	1
1.2.	Location and accessibility	1
1.3.	Physiography	2
1.4.	Climate and habitation	3
1.5.	Economy	5
1.6.	Mineral resources	5
1.7.	Objectives	5
1.8.	Previous work	6
1.9.	Methodology	7
1.9.1.	Field work	7
1.9.2.	Laboratory work	7
1.9.3.	Work Plan	8

CHAPTER 2

GEOLOGY OF THE STUDY AREA

2.1.	Introduction	9
2.2.	Tectonic settings of the area	12
2.3.	Structure	16
2.4.	Geology	17
2.4.1.	Thak-Kiner amphibolites	17
2.4.2.	Chilas complex	19
2.4.3.	Kohistan batholith	23
2.4.4.	Jaglot group	26
2.4.5.	Unconsolidated sediments	28

CHAPTER 3

PETROGRAPHY

3.1.	Sample collection and laboratory works	36
3.2.	Preparation of thin sections	36
3.2.1.	Primary cutting	37
3.2.2.	Primary grinding	37
3.2.3.	Sticking to the slide glass	37
3.2.4.	Secondary cutting	38
3.2.5.	Secondary grinding	38

3.2.6.	Mounting of cover glass	38
3.2.7.	Finishing	39
3.3.	Petrographic details	39
3.3.1.	Gabbronorite	43
3.3.2.	Gabbro	43
3.3.3.	Pyroxene quartz diorite	43
3.3.4.	Amphibolite	44
3.3.5.	Granite	44
3.3.6.	Tonalite	45

CHAPTER 4

GEOCHEMISTRY

4.1.	What is X-Ray fluorescence?	64
4.2.	Basic overview	64
4.3.	Underlying principle	66
4.4.	Strengths and limitations	67
4.4.1.	Strengths	67
4.4.2.	Limitations	67
4.5.	Sample Preparation	68
4.6.	Laboratory technique	70
4.7.	Major element chemistry	71
4.8.	Normative minerology	71

4.9.	Trace element chemistry	74
4.10.	Spider diagrams	75
4.11.	Trace elements behavior in Chilas complex rocks of Kiner Gah area	75
DISC	USSION	98
CON	CLUSIONS	101
REFE	CRENCES	102

LIST OF FIGURES

Figure 1.1.	Map showing location of the study area.	1
Figure 1.2.	3D elevation Model of Kiner Gah, Chilas.	2
Figure 1.3.	Contour and drainage pattern map of Kiner Gah, Chilas.	3
Figure 1.4.	Chart showing temperature variation in summer and	4
	winter. The temperatures are highest on average in July, at	
	around 28.2 °C. January is the coldest month, with	
	temperatures averaging 5.6 °C.	
Figure 1.5.	Rainfall variation in the area. The least amount of rainfall	4
	occurs in November and most of the precipitation falls in	
	April, averaging 46 mm.	
Figure 1.6.	Sample location map of the investigated area i.e. Kiner	7
	Gah, Chilas.	
Figure 2.1.	A simplified geological map of North Pakistan showing	10
	the position of Kohistan paleo- island arc back-arc terrane	
	(after Takahasi et al., 1996).	
Figure 2.2.	Geological map of a part of the Kohistan island	12
	arcexposed in Gilgit and Chilas areas of Gilgit-Baltistan	
	(after Khan T et al., 2011).	
Figure 2.3.	Sketch map of the Indian plate and its margins, showing	13
	the tectonic position of the Kohistan and Ladakh terranes	
	(after Khan et al, 1996).	
Figure 2.4.	A simplified model illustrating the tectonic evolution of	15
	the Kohistan paleo-island arc-back are over a span of >130	
	to 40 Ma (modified after Khan et al., 2007).	
Figure 2.5.	(A) Tectonic setting of Kohistan between two, north-	16
	dipping subduction zones in Cretaceous times. The	
	uprising magma (orange) from subducted oceanic slab is	
	being crystallized to form KIA's oldest rock i.e. D-type	

	Kamila amphibolites. Rifting has been started at the back	
	arc basin of developing island arc which will result in	
	formation of Chilas Complex. (B) Rifting has been ceased	
	and Chilas Complex (Red) is fully developed.	
	Compressional regime is now dominant due to ongoing	
	northward movement of Indian plate and the distance	
	between the early formed Komila Amphibolites and	
	Chilas complex is almost closed (after Burg, et al., 2011).	
Figure 2.6.	Geological Map of Kiner Gah showing foliation directions	18
	of different rock units.	
Figure 2.7.	Profile across Chilas Complex and adjoining lithologies	19
	near Kiner Gah, Chilas (Modified after Jagoutz et al.,	
	2007, 2009, 2012; Burg et al., 2011).	
Figure 2.8.	Photograph showing Quartz Feldspathic dike intruded into	29
	Gabbronorite of Chilas Complex in Kiner Gah area.	
Figure 2.9.	Photograph showing Quartz Feldspathic dike intruded into	30
	Gabbronorite of Chilas Complex Kiner Gah area.	
Figure 2.10.	Photograph showing hydrothermal alteration (around	31
	Quartz feldspathic vein) of Gabbronorite to Amphibolite.	
Figure 2.11.	A sheared contact between diorites and quartz feldspathic	32
	dyke	
Figure 2.12.	Unconsolidated sediments (glacio-fluvial deposits)	33
	covering the gabbronorites of the Chilas complex at Kiner	
	Gah near Thak village.	
Figure 2.13.	Photograph showing an anastomose feature indicating	34
	shearing in gabbronorite rocks of Chilas complex at Kiner	
	Gah.	
Figure 2.14.	Photograph showing shearing in the tonalite. Felsic melt is	35
	tygmatically folded. The rock is highly sheared and	
	deformed, Kiner Gah area.	

Figure 3.1. Photomicrograph showing gabbronorite rock of the Chilas 46 complex. Key: Opx, Orthopyroxene; Cpx, Clinopyroxene; Qz, Quartz; Pl, Plagioclase. Symbols are from Donna L. Whitney (2010). All photomicrographs are taken using 5x objective lense unless stated otherwise. Figure 3.2. Photomicrograph of gabbro rock of the Chilas complex. 47 Corona structure can be observed as depicted by some pyroxene grains with orthopyroxene in the core and hornblende at the margins. Key: Opx, Orthopyroxene; Cpx, Clinopyroxene; Qz, Quartz; Pl, Plagioclase; Hbl, Hornblende; Opq, Opaques. Figure 3.3. Photomicrograph showing gabbro rock of the Chilas 48 complex. A plagioclase grain is present as an inclusion in orthopyroxene. Key: Opx, Orthopyroxene; Cpx, Clinopyroxene; Qz, Quartz; Pl, Plagioclase. Figure 3.4. Photomicrograph of pyroxene quartz diorite rock from 49 investigated area. Corona texture is depicted by orthopyroxene grains due to reaction with surrounding quartz and plagioclase. Figure 3.5. Photomicrograph showing pyroxene quartz diorite rock 50 from investigated area. Oikocryst of diopsidic augite can be seen with subhedral orthopyroxene grains as inclusions. 51 Figure 3.6. Photomicrograph showing pyroxene quartz diorite from Chilas complex. Clinopyroxene is replacing after orthopyroxene. Exsolved biotite can also be seen. Key: Bi, Biotite. 52 Figure 3.7. Photomicrograph showing pyroxene quartz diorite from Chilas complex. Alteration of biotite in pyroxene can be observed. Figure 3.8. Photomicrograph of pyroxene quartz diorite where 53 pyroxene grains are showing sieve texture.

Figure 3.9.	Photomicrograph of Amphibolite rock from study area. Key: Rt, Rutile. Photograph was taken using 10x	54
	objective.	
Figure 3.10.		55
-	complex. Tremolite needles can be seen at the boundary	
	between plagioclase and quartz. Key: Tr, Tremolite.	
Figure 3.11.	Photomicrograph of Amphibolite rock from investigated	56
	area. Plagioclase is present as inclusions in hornblende.	
Figure 3.12.	Photomicrograph showing Amphibolite rock from Chilas	57
	complex. Hornblende grains depict sieve texture which is	
	formed due to chloritization.	
Figure 3.13.	Photomicrograph of Amphibolite rock from investigated	58
	area. Plagioclase is present as inclusions in hornblende.	
Figure 3.14.	Photomicrograph showing Amphibolite rock from Chilas	59
	complex. Hornblende oikocryst can be seen with	
	orthopyroxene present at its core.	
Figure 3.15.	Photomicrograph of granitic rock from study area. The	60
	rock is dominated by quartz.	
Figure 3.16.	Photomicrograph of granitic rock from study area. The	61
	rock is dominated by quartz and potash feldspar.	
Figure 3.17.	Photomicrograph of Kyanite oikocryst from biotite	62
	garnet bearing tonalite of Chilas complex. Key: Ky,	
	Kyanite.	
Figure 3.18.	Photomicrograph showing biotite garnet bearing tonalite	63
	from investigated area. The garnet porphyroblast contains	
	plagioclase and biotite as inclusions. Key: Grt, Garnet.	
Figure 4.1.	Illustration showing behavior of electrons when an	65
	incident X-Ray beam is bombarded on an atom.	
Figure 4.2.	Showing the typical form of the sharp fluorescent spectral	67
	lines obtained in the wavelength-dispersive method.	

Figure 4.3.	A flow diagram showing different steps involved in preparation of fusion bead.	70
Figure 4.4.	Normative Q'-F versus ANOR diagram (After Streckeisen and Le Maitre (1979) showing discrimination of samples in gabbronorite, diorite, tonalite and monzogranite fields. Symbols as in Fig. 4.5.	79
Figure 4.5.	Diagram proposed by Winchester & Floyd (1977) for classification of volcanic rocks using incompatible element ratios.	80
Figure 4.6.	Rock classification diagram showing rocks of the Kohistan paleo—island arc-back- arc after Winchester and Floyd (1977).	81
Figure 4.7.	AFM diagram representing all the rocks of investigated area occupy the field of tholeiite (after Irvine and Baragar, 1971).	82
Figure 4.8.	SiO2 versus Na2O + K2O plot for sampled rocks of Kiner Gah. All samples plot in sub-alkalic field (after Miyashiro, 1978)	83
Figure 4.9.	SiO2 variation binary diagrams of the rock samples from Kiner Gah. Symbols: plus = granites; filled diamonds = amphibolites; filled triangles = Pyroxene Quartz Diorite; filled circles = gabbro.	84
Figure 4.10.	SiO2 variation binary diagrams of the rock samples from Kiner Gah. Symbols: plus = granites; filled diamonds = amphibolites; filled triangles = Pyroxene Quartz Diorite; filled circles = gabbro.	85
Figure 4.11.	SiO2 variation binary diagrams of the rock samples from Kiner Gah. Symbols: plus = granites; filled diamonds = amphibolites; filled triangles = Pyroxene Quartz Diorite; filled circles = gabbro.	86

xi

Figure 4.12.	SiO2 variation binary diagrams of the rock samples from	87
	Kiner Gah. Symbols: plus = granites; filled diamonds =	
	amphibolites; filled triangles = Pyroxene Quartz Diorite;	
	filled circles = gabbro.	
Figure 4.13.	SiO2 variation binary diagrams of the rock samples from	88
	Kiner Gah. Symbols: plus = granites; filled diamonds =	
	amphibolites; filled triangles = Pyroxene Quartz Diorite;	
	filled circles = gabbro.	
Figure 4.14.	SiO2 variation binary diagrams of the rock samples from	89
	Kiner Gah. Symbols: plus = granites; filled diamonds =	
	amphibolites; filled triangles = Pyroxene Quartz Diorite;	
	filled circles = gabbro.	
Figure 4.15.	SiO2 variation binary diagrams of the rock samples from	90
	Kiner Gah. Symbols: plus = granites; filled diamonds =	
	amphibolites; filled triangles = Pyroxene Quartz Diorite;	
	filled circles = gabbro.	
Figure 4.16.	SiO2 variation binary diagrams of the rock samples from	91
	Kiner Gah. Symbols: plus = granites; filled diamonds =	
	amphibolites; filled triangles = Pyroxene Quartz Diorite;	
	filled circles = gabbro.	
Figure 4.17.	SiO2 variation binary diagrams of the rock samples from	92
	Kiner Gah. Symbols: plus = granites; filled diamonds =	
	amphibolites; filled triangles = Pyroxene Quartz Diorite;	
	filled circles = gabbro.	
Figure 4.18.	Binary diagram of cobalt versus Fe2O3 showing negative	93
	correlation of variable.	
Figure 4.19.	Binary plot of Cr versus Ti showing the rock samples plot	94
	in Low Pottasium Tholeites i.e. island arc domain (after	
	Pearce, 1975).	
Figure 4.20.	Binary log plot of Y versus Nb after Pearce et al. (1984).	95
	Rocks of investigated area plot in Island arc field.	

Figure 4.21.	N-MORB-normalized spider diagram for the rock samples	96
	of investigated area. Symbols as in Fig 4.20. Normalizing	
	values are from Sun and McDonough (1989).	
Figure 4.22.	Primitive mantle-normalized spider diagram for the rock	97
	samples of investigated area. Symbols as in Fig 4.20.	
	Normalizing values are from Sun and McDonough (1989).	
Figure 5.1.	Tectonic evolution model for Chilas complex based on finding of this research. (After Khan T, 1995)	99

LIST OF TABLES

Table 2.1.	Stratigraphy of the Kohistan Island arc.	11
Table 3.1.	Visual estimation chart of studied thin section.	40
Table 4.1.	Comparison between Fusion bead method and pressed powder	69
	method.	
Table 4.2.	Geochemical analysis for major element geochemistry of	73
	selected samples.	
Table 4.3.	Trace element geochemical analysis data for selected samples	77
	from Kiner Gah.	
Table 4.4.	Mineralogical estimates of geochemically analyzed sampled	78
	rocks using CIPW norm calculation.	