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ABSTRACT 

 The Chilas Complex is 40 km wide plutonic body present at the center of Kohistan 

Island Arc sequence extending up to 300 km in east-west direction. The Kohistan arc 

terrane has been considered to form due to the northward subduction of the Neo- 

Tethyan oceanic lithosphere plate under the Eurasian plate during Cretaceous time. The 

rocks of Chilas complex are exposed in Kiner Gah, east of Chilas town. These rocks 

include gabbro, gabbronorite, tonalite, pyroxene quartz diorite, amphibolites and 

granites. Field studies suggest that the complex has intrusive lower contact with the 

Thak amphibolite and has a direct upper contact with granitic rocks of Kohistan 

batholith. This research focuses on petrographic and geochemical study of Chilas 

complex rocks to find out its origin.  Major and trace elements study signify that these 

rocks to belong to a one common magma source composition. The primary magma 

seems to be basaltic in finally fractionating to granites. Negative Nb and P anomaly in 

the rocks of the Kiner Gah area represented by spider diagrams indicate that the melt 

was derived from metasomatized mantle, probably developed in island arc type back 

arc environment. Kyanite bearing garnet tonalite, which is first time reported from the 

Chilas complex in this research also serves as the evidence that the melt was derived 

from metasomatized mantle. 
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