MICROFACIES ANALYSIS OF EOCENE NAMMAL FORMATION, NAMMAL GORGE, SALT RANGE, PAKISTAN; IMPLICATION FOR DIAGENESIS AND ENVIRONMENT OF DEPOSITION

By

KHURRAM SHAHZAD MUHAMMAD ASIM KHAN JAHANGIR KHAN

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY, ISLAMABAD

MICROFACIES ANALYSIS OF EOCENE NAMMAL FORMATION, NAMMAL GORGE, SALT RANGE, PAKISTAN; IMPLICATION FOR DIAGENESIS AND ENVIRONMENT OF DEPOSITION

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Geology

KHURRAM SHAHZAD MUHAMMAD ASIM KHAN JAHANGIR KHAN

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY, ISLAMABAD

ACKNOWLEDGEMENT

First of all thanks to Almighty Allah, the Supreme Being who bestowed upon us the strength and ability to successfully complete this task.

We extend our sincere thanks to our supervisor Mr. Mumtaz Ali Khan, Lecturer, Department of Earth and Environmental Sciences, Bahria University, Islamabad for his unconditional support and advice.

We are thankful to every individual who helped us in the completion of this dissertation.

Thanks to Mr. Rasheed (Lab Assistant) Department of Geology University of Peshawar for helping in the making of thin sections.

We are also thankful to the Director of National Center of Excellence in Geology (NCEG) to permit us to capture the microphotographs by utilizing Polarizing microscope in sedimentology lab.

ABSTRACT

Nammal formation of Eocene age exposed in Nammal gorge was investigated for interpretation of biostratigraphic assemblage, microfacies analysis, diagenetic settings and paleoenvironmental conditions. A total of 16 samples were collected from the base of the Formation to the top of the Formation an interval of three to five meter distance during the field for the detailed microscopic studies.

The term "Nammal Formation" has been formally accepted by stratigraphic committee of Pakistan for the "Nammal Limestone" and "Shale" of Gee (Fermor, 1935) and "Nammal Marl" of Danilchik and Shah (1987) occurring in Salt Range and Trans Indus Ranges. The Formation has conformable lower and upper contact with Patala and Sakesar Formations respectively.

Globigerina sp., d'Orbigny, (1826), Discocyclina sp., Gumbel, (1868), Assilina laminose sp., W. D (1953), Hamulusella liburnica sp., Buser & Radoicic (1987), Nummulites sp., Lamarck, (1801), Lepidocyclina eodilatata sp., Coleman (1963), Lepidocyclina (Eulepidina) ephippioides sp., Jones and Chapman (1900), Textularia sp., Defrance, (1824) and Cymopolia sp., after Scholle and Ulmer Scholle, (2003) were also identified on the basis of detailed petrographic characteristics, and four microfacies are assigned which are Foraminiferal bioclastic wackestone microfacies, Bioclastic wackestone-packstone microfacies, Mudstone microfacies and Bioclastic mudstone to wackestone microfacies. These four microfacies representing the inner ramp, middle ramp, ramp slope and outer ramp depositional environments.

The presence of various cement types and diagenetic processes leads to the conclusion that the Nammal Formation was deposited in the shallow shelfal conditions. The age of the Nammal Formation is reassigned which is from Late-Paleocene to Early-Eocene on the basis of microfossils content present in it.

CONTENTS

		Pages
	ACKNOWLEDGMENTS	i
	ABSTRACT	ii
	FIGURES	vii
	PLATES	ix
	TABLES	X
	CHAPTER 1	
	INTRODUCTION	
1.1	General statement	1
1.2	Location and accessibility	2
1.3	Climate	3
1.4	Topography	3
1.5	Water and Vegetation	4
1.6	Previous work	4
1.7	Objectives	6
1.8	Methodology	7
	CHAPTER 2	
	REGIONAL GEOLOGY AND TECTONICS SETTING	
2.1	Introduction	11
2.2	Tectonic Zones	13
2.2.1	Karakoram Block	13
2.2.2	Main Karakoram Thrust	13
2.2.3	Kohistan Magmatic Arc	15

2.2.4	Main Mantle Thrust (MMT)	15
2.2.5	Main Boundary Thrust (MBT)	16
2.2.6	Northern Deformed Fold and Thrust Belt	16
2.2.7	Southern Deformed Fold and Thrust Belt	16
2.3	Tectonics of the Study Area	16
2.3.1	Salt Range	17
	CHAPTER 3	
	STRATIGRAPHY	
3.1	General Stratigraphy of Pakistan	18
3.2	Stratigraphy of Salt Range	20
3.2.1	Late Permian Sequence	20
3.2.1.	1 Amb Formation	20
3.2.1.2	2 Wargal Formation	20
3.2.1.3	3 Chhidru Formation	21
3.2.2	Triassic Sequence	21
3.2.2.	1 Mianwali Formation	22
3.2.2.2	2 Tredian Formation	22
3.2.2.3	3 Kingriali Formation	23
3.2.3	Jurassic Sequence	24
3.2.3.	1 Datta Formation	24
3.2.4	Paleocene Sequence	24
3.2.4.	1 Hangu Formation	24
3.2.4.2	2 Lockhart Formation	25
3.2.4.3	3 Patala Formation	26

3.2.5	Eocene sequence	27
3.2.5.1 Nammal Formation		27
3.2.5.2	3.2.5.2 Sakesar Formation	
	CHAPTER 4	
	BIOSTRATIGRAPHY AND MICROFOSSIL ASSEMBLEGES	
4.1	Introduction	29
4.2	Globigerina sp., d'Orbigny, (1826)	30
4.3	Discocyclina sp., Gumbel, (1868)	30
4.4	Assilina laminose sp., W. D (1953)	30
4.5	Hamulusella liburnica sp., Buser & Radoicic (1987)	30
4.6	Nummulites sp., Lamarck, (1801)	30
4.7	Lepidocyclina eodilatata sp., Coleman (1963)	31
4.8	Lepidocyclina (Eulepidina) ephippioides sp., Jones and Chapman (1900)	31
4.9	Textularia sp., Defrance, (1824)	31
4.10	Cymopolia sp., after Scholle and Ulmer Scholle, (2003)	32
4.11	Plates	33
	CHAPTER 5	
	MICROFACIES ANALYSIS AND DEPOSITIONAL ENVIRONMENT	
5.1	Introduction	42
5.2	The Dunham classification	43
5.3	Microfacies Descriptions of the Selected Sections	43
5.3.1	Foraminiferal bioclastic wackestone microfacies	45
5.3.2	Bioclastic wackestone-packstone microfacies	46

5.3.3	Mudstone microfacies	47
5.3.13	3 Bioclastic mudstone to wackestone microfacies	48
5.4	Paleoenvironments of the Nammal Formation	49
5.5	Depositional model of the Nammal Formation	50
	CHAPTER 6	
	DIAGENESIS OF NAMMAL FORMATION	
6.1	Introduction	51
6.2	Diagenetic Features of Nammal formation	51
6.2.1	Cement Types	51
6.2.1.1 Sparry Calcite Cement		
6.2.1.2 Ferroan Calcite Cement		52
6.2.1.	.3 Isopach Bladed Cement	53
6.2.2	Micritic Envelopes	54
	CONCLUCION	~~
	CONCLUSION REFERENCES	55 56
	REFERENCES	30

FIGURE

		Pages
Figure 1.1.	Road map from Islamabad to Mianwali. (Google map).	3
Figure 1.2.	Sampling of the Study Area (Nammal Formation, Nammal Gorge	7
	Western Salt Range).	
Figure 1.3.	Photograph showing thin section preparation laboratory of	8
	Department of Geology, University of Peshawar.	
Figure 1.4.	Photograph displaying the Nikon Polarizing microscope with	9
	Nikon camera and LCD at Sedimentology Laboratory, NCE in	
	Geology, University of Peshawar.	
Figure 2.1.	Pathway of Indian Plate towards Eurasian Plate (Pierre Dèzes,	12
	1999).	
Figure 2.2.	Tectonic zones of Pakistan (Farah et. al., 1984).	14
Figure 2.3.	Geological map of the Study Area.	17
Figure 3.1.	Formations in the Nammal Gorge.	23
Figure 3.2.	A field view of the Lockhart Formation in the Nammal Gorge.	25
Figure 3.3.	A field view of the Nammal and Patala Formations in the Nammal	26
	Gorge.	
Figure 3.4.	A field view of the Sakesar, Nammal and Patala Formations in the	28
	Nammal Gorge	
Figure 5.1.	Dunham classification of carbonate rocks. (after Dunham, 1962)	43
Figure 5.2.	Columnar section of Nammal Formation showing microfacies	44
	distribution in Nammal Gorge, Salt range, Pakistan.	
Figure 5.2.	Showing bioclasts (B.cl) scattered in micrite and assigning this a	45
	name of wackestone microfacie.	
Figure 5.3.	Textularia (Tx), Glauconite (Gn) and Bioclasts (B.cl) present	46
	along micrite matrix showing wackestone-packstone microfacie.	
Figure 5.4.	Foraminiferal bioclasts are found scattered (figure A) with lime	47
	mud (li.m) and micrite (Mi). In (figure B) lime mud (li.m) and	
	micrite (Mi) are present in mudstone microfacie.	

Figure 5.5.	Showing bioclasts (B.cl) mudstone to wackestone microfacies.	48
Figure 5.6.	Showing depositional model of the Nammal Formation.	50
Figure 6.1.	Sparry calcite cement along with veins and Bioclasts are present	52
	which are subhedral to euhedral	
Figure 6.2.	Dolomitization along with ferroan calcite veins are observed under	53
	Plane Polarized Light.	
Figure 6.3.	Bioclasts (filled by ferroan calcite cement but also Isopach bladed	53
	cement is present around chambers) Dolomitization is also visible.	
Figure 6.4.	Foraminifera and possibly Bioclasts which is totally dissolved	54
	showing mouldic porosity	

PLATES

		Pages
PLATE 1	Figure A; showing <i>Nummulites mammillatus</i> (N.M) and	36
	Globigerina sp (GB), Figure B; showing Nummulites	
	atacicus (N.A)and Globigerina sp (GB), Figure C; showing	
	Globigerina sp (GB) and Pyrite (PY) and Figure D; showing	
	Globigerina sp (GB) with Glauconite (GN).	
PLATE 2	Figure A; showing Nummulites mammillatus (N.M), Figure	37
	B; showing Nummulites mammillatus (N.M), Figure C;	
	showing Discocyclina sp (DC) and Nummulites	
	mammillatus (N.M), Figure D; showing Nummulites	
	mammillatus (N.M) and Nummulites atacicus (N.A), Figure	
	E; showing Nummulites sp (N.sp) and Figure F; showing	
	Nummulites globulus (N.G).	
PLATE 3	Figure A, B, C and D; showing <i>Discocyclina</i> sp (DC), Figure	38
	E; showing Lepidocyclina ephippioides (LC), and Figure F;	
	showing Lepidocyclina eodilatata.	
PLATE 4	Figure A, B, C, D, E and F; Showing Bioclasts (B.C) and	39
	Pyrite (PY) is shown in Figure C.	
PLATE 5	Figure A; showing Assilina laminose (AL), Figure B,C and	40
	D; showing Planktonic foraminifera (P.F) with Pyrite (PY) in	
	В.	
PLATE 6	Figure A and B; showing Textularia (TX), Figure C;	41
	showing Hamulusella liburnica (H.L) and Figure D; showing	
	Cymopolia sp (CMP.sp).	

TABLES

		Pages
Table 3.1.	Stratigraphic Chart of the study area (Nammal Gorge Section)	19