PHYSICAL AND CHEMICAL HYDROGEOLOGYOF CHENAB NAGAR, CHINIOT, PUNJAB

By

MOBEEN TAHIR TAJAMUL HUSSAIN ZUNAIR ABBASI

Department of Earth and Environmental Sciences Bahria University, Islamabad

PHYSICAL AND CHEMICAL HYDROGEOLOGY OF CHENAB NAGAR, CHINIOT, PUNJAB

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Geology

> MOBEEN TAHIR TAJAMUL HUSSAIN ZUNAIR ABBASI

Department of Earth and Environmental Sciences Bahria University, Islamabad

DEDICATED TO

MOTHERS AND HYDROGEOLOGISTS

ABSTRACT

The study area is located in Chenab Nagar, Chiniot, Punjab. Groundwater has been explored using electrical resistivity survey, physicochemical and isotopic analysis. Groundwater table depth and subsurface geology has been studied by acquiring the subsurface resistivity data using ABEM SAS 4000 terrameter up to 100m by Schlumberger configuration and interpreted with the help of resistivity curves generated in IX1D software. The groundwater samples have been collected from the already present water wells as per guidelines given by the American Public Health Association (APHA). The samples have been analyzed for turbidity, pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Bicarbonate (HCO₃), Chloride (Cl), and Sulphate (SO₄) from the Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad. The lithologies determined by the electrical resistivity surveysuggest presence of confined and unconfined aquifers made up of Quaternary sand depositsseparated by the clay confining layers. The water table is present at relatively shallow depth 10 to 45 m that makes it susceptible to contamination. The physicochemical parameters furnished that the groundwater quality is poor to marginal according to the World Health Organization (WHO).Correlation analysis of major cations and anions with TDS (Total Dissolved Solids)revealed that groundwater recharge source is similar for all samples. With the study of stable environmental isotopes (δ^2 H, δ^{18} O) recharge source is identified as precipitation. Groundwater present in this area can be brought to use for public with the setup of proper treatment plants that do not add toxic materials to water.

ACKNOWLEDGEMENTS

Sincerest gratitude to supervisors Dr. Anwar Qadir, Assistant Professor, Department of Earth and Environmental Sciences, Bahria University, Islamabad and Mr. Muhammad Raiees Amjad, Lecturer, Department of Earth and Environmental Sciences, Bahria University, Islamabad for their advice, guidance, encouragement and most of all their support to carry out and carry on this research.

We owe thankfulness to Dr. Mirza Naseer Ahmad, HOD Earth Sciences Department, Nusrat Jahan College and PINSTECH Nilore Islamabad for providing us commodities that we required. We are very grateful to all Earth and Environmental Sciences, Bahria University, Islamabad faculty members who have been very kind to lend a hand in every step of learning and understanding.

Lastly, we are ever indebted of our parents who back us up in every step and hold us up in the moments of disbelief and provide us momentum to propel towards success in every field of life especially education.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	v
TABLES	vii

CHAPTER 1

INTRODUCTION

1.1	General statement	1
1.2	Location and accessibility	2
1.3	Climate	2
1.4	Economy	2
1.5	Research objective	2
1.6	Previous work	3
1.7	Field work	3
1.8	Laboratory work	3
1.9	Research work strategy	4

CHAPTER 2

RESEARCH METHODOLOGY

2.1	Electrical resistivity survey	7
2.2	Resistivity techniques and instrument	7
2.3	Resistivity data processing and analyses	9
2.4	Water sample analyses	9
2.5	Physical parameter analyses	9
2.6	Chemical analyses	10
2.7	Stable environmental isotope analyses	11

CHAPTER 3

HYDROGEOLOGICAL PROSPECTING BY ELECTRICAL RESISTIVITY

3.1	Survey and working	13
3.2	Resistivity curve matching and interpretation	13
3.2.1	Curve matching	13
3.2.2	Curve interpretation	15
3.3	Water table depth analysis	27
3.4	Lithological columns and their thickness	29
3.4.1	Interpretation of lithological columns	31
3.4.2	Correlation of ERS probes	31

CHAPTER 4

WATER QUALITY ANALYSIS OF WATER

4.1	Physical parameter analysis	36
4.1.1	Turbidity	37
4.1.2	Total Dissolved Solids	37
4.1.3	Electrical Conductivity	38
4.1.4	pH	40
4.2	Water Quality Indices	40
4.2.1	Water Quality Index Calculation	41
4.2.2	Result generated for Water Quality Index	43
4.3	Major anions and cations	44
4.3.1	Sodium ion	44
4.3.2	Calcium ion	45
4.3.3	Potassium ion	47
4.3.4	Magnesium ion	48
4.3.5	Chlorides	49
4.3.6	Sulphate	50
4.3.7	Bicarbonate	51
4.4	Correlation analysis	52
	CHAPTER 5	
	STABLE ENVIRONMENTAL ISOTOPE ANALYSIS OF WATER	
5 1	Undrogon and any gap Isotona (S^{2} IL S^{18} O) relationship	54

5.1	Hydrogen and oxygen Isotope (δ^2 H - δ^2 O) relationship	54
5.2	Deuterium excess (d-excess)	56
CONCL	USIONS	58
RECON	RECOMMENDATIONS	

FIGURES

Figure 1.1.	Index map of Pakistan highlighting province Punjab and further	
	District Chiniot.	1
Figure 2.1.	Flow chart showing step by step research work advancing.	6
Figure 2.2.	Electrical resistivity set up demonstration.	8
Figure 2.3.	Terrameter SAS 400 by ABEM, Sweden used during field survey.	
		8
Figure 3.1.	ERS points shown on the Chenab Nagar Map densely populated on either side of Faisalabad-Sargodha Road.	12
Figure 3.2.	H, K, A and Q type 4 master curves for three layer sub surface lithologies.	12
		14
Figure 3.3.	KH, KQ, AA and AK type 4 layer master curves.	14
Figure 3.4.	HA, HK, QH and QQ type four layer master curves.	15
Figure 3.5.	ERS-1, HA-type four layer curves interpreted.	16
Figure 3.6.	ERS-1b, QH-type four layer curves interpreted.	17
Figure 3.7.	ERS-2 HA-type four layer curves interpreted.	18
Figure 3.8.	ERS-3 K-type four layer curves interpreted.	19
Figure 3.9.	ERS-3b H-type four layer curves interpreted.	20
Figure 3.10.	ERS-4 AK-type three layer curves interpreted.	21
Figure 3.11.	ERS-5 A-type three layer curves interpreted.	22
Figure 3.12.	ERS-6, H-type three layer curves interpreted.	23
Figure 3.13.	ERS-7, K-type three layer curves interpreted.	24
Figure 3.14.	ERS-8, AK-type four layer curves interpreted.	25
Figure 3.15.	ERS-9, AK-type four layer curves interpreted.	26
Figure 3.16.	ERS-10, AK-type four layer curves interpreted.	27
Figure 3.17.	Study area, ERS-connection and ERS points shown.	31
Figure 3.18.	Correlation between ERS-10, ERS-4, ERS-5, ERS-6.	32

Figure 3.20.	Correlation between ERS-9, ERS-8, ERS-7, ERS-10.	34
Figure 3.21.	Correlation between ERS-1, ERS-3B, ERS-5.	34
Figure 4.1.	TDS values of 11 samples along with WHO standard value.	38
Figure 4.2.	EC values of 11 samples.	39
Figure 4.3.	pH values of 11 samples along with WHO standard value.	40
Figure 4.4.	Graph for calculating Q-value of pH.	42
Figure 4.5.	Graph for calculating Q-value for TDS.	43
Figure 4.6.	Graph for calculating Q-value for turbidity.	43
Figure 4.7.	$\mathrm{Na}^{\scriptscriptstyle +}$ values of 11 samples along with WHO standard value.	45
Figure 4.8.	Ca ⁺² values of 11 samples along with WHO standard value.	46
Figure 4.9.	CaCO ₃ hardness values of 11 samples.	47
Figure 4.10.	$\mathbf{K}^{\scriptscriptstyle +}$ values of 11 samples along with WHO standard value.	48
Figure 4.11.	Mg ⁺² values of 11 samples along with WHO standard value.	49
Figure 4.12.	Cl ⁻ values of 11 samples along with WHO standard value.	50
Figure 4.13.	SO4 values of 11 samples along with WHO standard value.	51
Figure 4.14.	HCO ₃ values of 11 samples along with WHO standard value.	52
Figure 5.1.	GWML, Sargodha LMWL and Chenab Nagar MWL showing relationship of $^{18}\mathrm{O}$ and $^{2}\mathrm{H}.$	56
Figure 5.2.	δO_{18} and Deuterium excess (d-excess) relationship of Chenab	
	Nagar Ground water.	57

TABLES

Table 3.1.	Location and elevation from sea level for ERS points measured in Chenab Nagar.	13
Table 3.2.	Nominal resistivity values of water run-off.	28
Table 3.3.	Water table depth and resistivity determined by the resistivity curves	
	developed from field data in IX1D software.	28
Table 3.4.	ERS points with the layers, their thickness and lithologies interpreted.	29
Table 4.1.	Samples with respect to ERS points and their physico-chemical	
	properties.	36
Table 4.2.	WQI parameters and their weighting factor.	41
Table 4.3.	WQI value range and its classification.	42
Table 4.4.	Sample numbers, their TDS, pH, Turbidity along with Q-values and	
	WQI.	44
Table 4.5.	Table showing levels of significance of correlation with respect to P-	
	value.	52
Table 4.6.	Table showing 'r' and 'p-value' of correlation along with its	
	significance.	53
Table 5.1.	Sample codes and their stable isotope values with d-excess.	55