TUNNEL SUPPORT SYSTEM FOR THE SAFE EXCAVATION OF TUNNEL KARAKORAM HIGHWAY PHASE II HAZARA MOTORWAY

By MUHAMMAD ADNAN SAMI MUHAMMAD OUSAMA KHAN MUHAMMAD UMER

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY ISLAMABAD 2018

ABSTRACT

This thesis is based on the tunnel excavation process used in Abbottabad tunnel no.1located at MalikPura having coordinates (34°09'59.2"N 73°11'31.5"E) along with the initial support system methodology used in the tunnel construction. The major tectonic of the area is Hazara syntaxis which is located at the north east of the Abbottabad tunnel no.1. Most of the area compromised of Hazara formation in which the specifically tunnel area contain phyllite in tunnel one and quartzite and slate in tunnel two. The tunnel face has been completed while the excavation process on the rest of the tunnel is ongoing. In the first tunnel the excavation process was being done by excavator machine and during the excavation a water spring was found. The Q value of rock that we found were Q4 and Q5 according to the Q value system. In the first tunnel supporting was weld mesh, rock bolts and shotcrete pipe canopies were installed for stiffer support while the shotcrete was sprayed and rock bolts were already installed.

In the second lane where excavation was being processed by drill and blast technique but due to the mistake in drill and blast schematics the cavity was formed at the excavation face and tunnel started to collapse because of which further excavation was held and the engineering and geologist provided a solution of tunnel collapse. As the cavity was six meter in height so muck buttressing along with shotcrete support was favored as a temporary solution.

ACKNOWLEDGEMENTS

Several individuals have contributed, directly or indirectly, toward making this thesis a reality. We would like to especially thank my supervisor, Mr. Saqib Mehmood Assistant Professor E&ES Department Bahria University Islamabad, for his encouragement and very helpful advice to me throughout my research. We have been very fortunate that he is my supervisor, and have learned many lessons in working under his guidance and leadership that we will remember for an extremely long time. Special thanks to Professor Dr. Tehseenullah Khan for allowing us to visit the Abbottabad tunnel no.1. We also acknowledge with gratitude the support of the Abbottabad Tunnel Staff of NHA & CPEC. We also owe many thanks to our fellow researcher, Ameer Hamza ,Umair Javiad and Malik Awais, for the comradeship we experienced and for the countless useful conversations we had, often as we solved and researcher the project specific problems. I am also grateful to Mr. Masood Anwar who shared a particular interest in this research area. Thanks are also due to the staff of the Earth & Environmental Sciences Bahria University, with whom we enjoyed a convivial relationship both inside and outside the University. We owe a debt of gratitude also to many of my former colleagues. Our thanks also go to Madam Maryam, Mr. Touseef, Mr. Khubaib and Mr. Hamza Naseem for the real interest they showed in my work throughout and for the many in depth discussions we had, and to Mr. Fahad for their assistance in grooming our problem solving skills. Our time on the Abbottabad site was challenging, often hot and sometimes frustrating but overall it was fun, assisted by all the members of the site team who made us very welcome. Finally we would like to thank all my friends and family for their support and kindness to me throughout my research and in writing this thesis.

CONTENTS

ABSTRA	ACT	i
ACKNO	WLEDGEMNTS	ii
CONTENTS		iii
FIGURE	FIGURES	
	CHAPTER 1	
	INTRODUCTION	
1.1	Introduction	1
1.2	Application of Geology in engineering projects	2
1.2.1	Tunnel	2
1.2.1.1	Strength & mechanical behavior of rock	2
1.2.1.2	Structures in rock mass	3
1.2.1.3	Groundwater condition	3
1.2.1.4	Gases in rock	3
1.2.2	Dam	3
1.2.3	Buildings	4
1.2.4	Highway, Railway and Bridge	5
1.3	Introduction to study area	5
1.3.1	Route description	5
1.3.1.1	Hasan Abdal and Havelian	6
1.3.1.2	Havelian to Shinkiari	6
1.3.1.3	Shinkiari to Thakot	6
1.3.1.4	Thakot to Raikot	7
1.3.1.5	Raikot to the Khunjerab Pass at Chinese border	7
1.3.1.6	Khunjerab Pass	7
1.3.1.7	Landslide shelters on KKH	7
1.3.1.8	China-Pakistan friendship tunnels	8
1.3.1.9	Gilgit to Skardu	8
1.3.2	Cost and Financing	8
1.4	Objectives	8
1.4.1	Data	8
1.5	Methodology	9

CHAPTER 2

STRATIGRAPHY AND LOCATION

2.1	Physiography of the area	10
2.2	Hazara Area Tectonic	11
2.3	Geology of the Abbottabad area	12
2.4	Hazara Formation Lithology	13
	CAHPTER 3	
	TUNNELS	
3.1	Tunnels	14
3.2	Requirement & Advantage	15
3.3	Parts of tunnel	15
3.4	Tunneling methods	16
3.4.1	Probe drilling	16
3.4.2	Excavation	16
3.4.3	Grouting	17
3.4.4	Supporting	17
3.4.5	Transportation of muck	18
3.4.6	Lining of tunnels	18
3.4.7	Wire mesh	18
3.4.8	Draining	19
3.4.9	Ventilation	.19
3.5	Tunneling techniques	20
3.5.1	Cut and cover technique	21
3.5.2	Drill and blast technique	21
3.5.3	Immersed tube method	24
3.5.4	New austrian tunneling method (NATM)	24
3.5.5	Tunnel boring machine	24
3.6	Effects of geology on tunnels	25
3.6.1	Effect of soil layers	25
3.6.2	Effect of faults	25
3.6.3	Tunnel excavations in the slopes	26
3.6.4	Effect of the folds	26
3.7	Rock tunnelling quality index	27

3.7.1	Rock quality designation	28
3.7.2	Joint set number (Jn)	29
3.7.3	Joint roughness number (Jr)	29
3.7.4	Joint alteration number (Ja)	29
3.7.5	Joint water reduction(Jw)	30
3.7.6	Stress reduction factor (SRF)	31
	CHAPTER 4	
	ANALYSIS OF TUNNEL 01	
4.1	Concealed portal construction	32
4.1.1	Rock quality	34
4.1.2	Tunnel excavation:	34
4.1.3	Construction drainage	34
4.1.4	Tunnel design scheme and construction scheme under special geolocondition	ogical 35
4.1.5	Preventive measure resisting vibration in the tunnel	35
4.2	Site monitoring measurement	36
4.2.1	Geological prediction	36
4.2.2	Tunnel surrounding deformation measurement	36
4.2.3	Stress-strain measurement:	36
4.2.4	Stability of surrounding rock and analysis of support effect	36
4.3	Tunnel water proof and drainage	37
4.3.1	Design principle of waterproof and drainage:	37
4.3.2	Waterproof standard	37
4.4	Main technical measures of waterproof and drainage	37
4.4.1	Entrance section	37
4.4.2	Open cut tunnel	38
4.4.3	Covered cut tunnel	38
4.4.4	Construction, joint, deformation joint and back strip waterproof	38
4.4.5	Construction matters Nneded attention	38
4.5	First tunnel assessment	40
4.6	Second tunnel assessment	41

Table Table 2.1	Stratigraphy of Abbottabad	page 11
Table 4.1	Table of tunnel	33
Table 4.2	Q value of rock	34
Table 4.3	Tunnel surrounding rock composite lining support design	40

46

Figure 4.2 Cavity encountered in tunnel 2