ABSTRACT

The Jutana Dolomite of the Cambrian age is exposed in the Khewra Gorge, eastern Salt Range, along the Salt Range Thrust (SRT). The dolomite is studied in detail at the outcrop and under the polarizing microscope. The microfacies of the Jutana Dolomite are investigated. Furthermore, uniaxial compressive strength (UCS) and ultimate tensile strength (UTS) has been performed to investigate the mechanical properties of Jutana Dolomite. In addition, the relationship of petrographic and mechanical properties of Jutana Dolomite is determined.

The Jutana Dolomite is comprised of dolomite, sandy dolomite and shale beds at the outcrop. Based on the microscopic study, the following microfacies are identified i.e. Siliciclastic Algal Laminated Dolomite Facies, Sandy Dolomite Facies, Dolomitic Sandstone Facies, Siliciclastic Dolomicrite Facies, Dolomicrite-Dolosparite Facies, Fine Grained Micaceous Sandy Dolomite Facies.

The mechanical properties of Jutana Dolomite are investigated with the help of the strength tests that are uniaxial compressive strength (UCS) and ultimate tensile strength (UTS). The results of the strength tests show that the Jutana Dolomite is a moderately strong.

Furthermore, the relationship of petrographic and mechanical properties of Jutana Dolomite is determined. The percentage of quartz plays a positive impact on the mechanical properties. The fractures present in quartz decreases the value of strength.

ACKNOWLEDGEMENT

All praises are for Allah Almighty who has bestowed the mankind with knowledge, vision and energy to continuously improve and strive for excellence.

We are, at this moment, especially would like to give our heartiest thanks to supervisor **Mr. Mustafa Yar, Senior Lecturer Bahria University, Islamabad** for providing an opportunity to complete our thesis work with him. We are greatly acknowledge his role, contribution and sharing his knowledge related to research. We would also like to give heartiest thanks to our family and friends for supporting in the thesis and to finalizing this work.

Abbreviations

MBT	Main Boundary Thrust
SRT	Salt Range Thrust
NPDZ	Northern Potwar deformed zone
KBF	Kalabagh fault
KF	Kurram Fault
MMT	Main Mantle Thrust
BP	Bannu Promontory
SR	Surghar Range
KR	Khisor Range
MR	Marwat Range
UV	Ultraviolet
PMDC	Pakistan Mineral Development Corporation
SE	South East
NW	North West
UCS	Uniaxial Compressive Strength
UTS	Ultimate Tensile Strength

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
ABBREVIATIONS	iii
CONTENTS	iv
FIGURES	vii
TABLES	viii

CHAPTER 1

INTRODUCTION

1.1	General Description	01
1.2	Location and accessibility	01
1.3	Literature Review	02
1.4	Objectives	03
1.5	Methodology	03
1.5.1	Field work	03
1.5.2	Lab work	04
1.5.2.1	Making Thin Sections	04
1.5.2.2	Analysis of Thin Section Using Petrographic Microscope	04
1.5.2.3	Digital Photomicrography	04
1.5.2.4	Mechanical Tests	04

CHAPTER 2

STRATIGRAPHY OF THE JUTANA DOLOMITE

2.1	General Geology of the Study Area	05
2.2	Stratigraphy of the Khewra Gorge	05
2.2.1	Salt Range Formation	05
2.2.2	Khewra Sandstone	06
2.2.3	Kussak Formation	06
2.2.4	Jutana Dolomite	07

2.2.5	Bhaganwala Formation	13
2.2.6	Tobra Formation	14

CHAPTER 3

TECTONICS AND GENERAL GEOLOGY

3.1	Indus basin	16
3.2	Potwar basin	16
3.3	Tectonic Framework	17
3.4	Kohat-Potwar Fold and Thrust Belt	18

CHAPTER 4

PETROGRAPHY OF THE JUTANA DOLOMITE

4.1	Introduction	20
4.2	Methodology	20
4.3	Microfacies of the Jutana Dolomite	21
4.3.1	Siliciclastic Algal Laminated Dolomite Facies	21
4.3.2	Sandy Dolomite Facies	23
4.3.3	Dolomitic Sandstone Facies	24
4.3.4	Siliclastic Dolomicrite Facies	25
4.3.5	Dolomicrite-Dolosparite Facies	26
4.3.6	Fine Grained Micaceous Sandy Dolomite Facies	27
4.4	Origin of Dolomite in Jutana Formation	28

CHAPTER 5

MECHANICAL PROPERTIES OF THE JUTANA DOLOMITE

5.1	Introduction	29
5.2	Laboratory Tests	29
5.2.1	Uniaxial Compressive Strength	30
5.2.2	Ultimate Tensile Strength	31
5.3	Results	33

5.4	Discussion	34
5.5	Relationship between Petrographic and Mechanical Properties of	35
	Jutana Dolomite	
	CONCLUSIONS	36
	REFERENCES	37

FIGURES

Figure 1.1.	Location map (Survey of Pakistan).	02 09
Figure 2.1.	Field photograph showing conformable contact between lower Jutana Dolomite and upper Bhaganwala formation.	09
Figure 2.2.	Field photograph showing lower dolomite and middle shale.	09
Figure 2.3.	Field photograph showing middle shale and upper dolomite.	10
Figure 2.4.	Field photograph showing massive bed of Jutana Dolomite (Hammer for scale).	10
Figure 2.5.	Field photograph showing sandy portion within Jutana Dolomite (Hammer for scale).	11
Figure 2.6.	Field photograph of Jutana Dolomite.	11
Figure 2.7.	Field photograph of Jutana Dolomite showing hard and compact	12
8	dolomite (Hammer for scale).	
Figure 2.8.	Field photograph of Jutana Dolomite showing sandy dolomite	12
	(Hammer for scale).	
Figure 2.9.	Field photograph showing shale content within Jutana Dolomite (Hammer for scale).	13
Figure 2.10.	Photograph showing bulk samples for extracting cores.	13
Figure 3.1.	Tectonics of the study area ((Kazmi & Rana, 1982).	19
Figure 4.1.	Showing the microfacies details of the Siliciclastic Algal	22
1.19410 1111	Laminated Dolomite Facies. Algal Laminations (AL in A and B),	
	Quartz (Q in A, B and C), Mica (M in C).	
Figure 4.2.	Showing microfacies details of the Sandy Dolomite Facies. Dolomite (D in A, B and C), Quartz (Q in B and C).	23
Figure 4.3.	Showing microfacies details of the Dolomitic Sandstone Facies.	24
	Dolomite (D in C), Quartz (Q in A and B), Micaceous minerals (M	
	in A and B) Calcite vein (Cv in B).	
Figure 4.4.	Showing the microfacies details of the Siliciclastic Dolomicrite	25
	Facies. Quartz (Q in A, B and C), Dolomicrite (DM in A, B and C),	
	Calcite vein (Cv in A).	
Figure 4.5.	Showing the microfacies details of the Dolomicrite-Dolosparite	26
-	Facies. Dolomicrite (DM in A and C), Dolosparite (DS in A and	
	C), Dolomite (D in C), Iron Leaching (IL in B).	
Figure 4.6.	Showing the microfacies details of the Fine Grained Micaceous	27
0	Sandy Dolomite Facies. Mica (M in A, B and C), Quartz (Q in A, B and C).	
Figure 5.1.	Core sample of Jutana dolomite loaded in machine for UCS testing.	30
Figure 5.2.	Core sample of Jutana dolomite loaded in machine for UTS testing.	32

TABLES

Table 2.1.	Generalized stratigraphic chart of Upper Indus Basin.	15
Table 5.1.	Laboratory Test results of UCS.	33
Table 5.2.	Laboratory Tests results of UTS.	33
Table 5.3.	Material grading based on Uniaxial Compressive Strength.	34
Table 5.4.	Relationship of UCS with Petrographic Properties.	35