BIOSTRATIGRAPHY AND MICROFACIES ANALYSIS OF SAKESAR FORMATION IN NAMMAL GORGE, WESTERN SALT RANGE, UPPER INDUS BASIN, PAKISTAN

By

SALMAN AHMED ASAD JAMIL SHUJAH BASHIR

Department of Earth and Environmental Sciences, Bahria University Islamabad

2016

BIOSTRATIGRAPHY AND MICROFACIES ANALYSIS OF SAKESAR FORMATION IN NAMMAL GORGE, WESTERN SALT RANGE, UPPER INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S. in Geology

SALMAN AHMED ASAD JAMIL SHUJAH BASHIR

Department of Earth and Environmental Sciences, Bahria University Islamabad

2016

ABSTRACT

The Sakesar Formation in Nammal Gorge, Western Salt Range, Pakistan was investigated to elaborate its Biostratigraphy, Microfacies and diagenetic settings. The Formation is widely distributed in the Salt Range and is composed of thin to thick bedded nodular Limestone, with minute distribution of shale, marls and chert in the upper part. It has a conformable lower contact with Nammal Formation. A detailed study was conducted after collecting 15 rock samples in vertical thickness of approx. 18.2m. Thorough detailed field observations and laboratory investigations revealed that the Sakesar Formation contains four Microfacies i.e. Bioclastic mudstone facies, Algal Miliolin mudstone and wackstone facies, Bioclastic wackstone facies and Nummulitic wackstone and packstone facies. A number of larger benthic Foraminifera i.e. Nummulites mamillatus (Fichtel and Moll), Nummulites atacicus (Leymerie), Nummulites globulus (Leymerie), Assilina subspinosa (Davies and Pinfold), Assilina laminose (Gill), Viviparus malleatus, Alveolina eliptica, Lockhartia conditi (Nuttall) and Assilina granulosa (d'Archiac). Research work also illustrates various cement types i.e. Micritic envelops, Aragonite dissolution, Isopach bladed cement and sparry calcite. Vertical variation in the studied sections indicates repetition of the interpreted environments. Microfacies analysis and digenetic settings leads towards the conclusion that formation was deposited in shallow shelf environment with different digenetic settings.

ACKNOWLEDGEMENTS

First of all, we would like to thank Allah Almighty, for blessing us with courage to complete this research work with dedication.

We would like to express our sincere gratitude to our supervisor Mr. Mumtaz Ali Khan, Lecturer E&ES, Bahria University Islamabad, for his guidance, supervision and encouragement. We would like to pay our tributes to our parents and other family members for their prayers and unsurpassed wishes.

We are also thankful to Mr. Rasheed, Lab Assistant at Department of Geology University of Peshawar for his help in thin sections preparation. Lastly, we are deeply indebted to Dr. Irshad, Director, National centre of excellence in Geology, University of Peshawer, for providing us with the facility of petrographic Lab for thin sections study.

	CONTENTS	PageNo.
ABSTRACT		i
ACKNOWLEDGEMENTS		ii
FIGURES		iv

CHAPTER 1

INTRODUCTION

1.1 Introduction	01
1.2 Location and Accessibility	01
1.3 Previous Work	02
1.4 Objectives	03
1.5 Methodology	03
1.5.1 Field Work	03
1.5.2 Laboratory Work	03
1.5.2.1 Thin Section Preparation	03
1.5.2.2 Microscopic Study	04

CHAPTER 2

GENERAL GEOLOGY

2.1 Regional Tectonic Setting	05
2.2 Salt Range thrust	05

CHAPTER 3

STRATIGRAPHY

3.1 Amb Formation	07
3.2 Wargal Formation	07
3.3 Chiddru Formation	08
3.4 Mianwali Formation	08
3.5 Tredian Formation	08
3.6 Kingriali Formation	09
3.7 Datta Formation	09
3.8 Samana Suk Formation	10
3.9 Hangu Formation	10
3.10 Lockhart Formation	11

3.11 Patala Formation	11
3.12 Nammal Formation	11
3.13 Sakesar Formation	12

CHAPTER 4

BIOSTRATIGRAPHY

4.1 Nummulites	14
4.2 Assilina granulosa	15
4.3 Assilina subspinosa	15
4.4 Assilina laminosa	15
4.5 Alveolina eliptica	15
4.6 Discocyclina dispansa	15
4.7 Lockhartia Conditi	15
4.8 Operculina patalensis	15
4.9 Ranikothalia sahni	16
4.10 Ranikothalia sindensis	16
4.11 Miliolid	16
4.12 Gastropod (Viviparus malleatus)	16
4.13 Marginopora	16
4.14 Sakesaria cotteri	16

CHAPTER 5

MICROFACIES ANALYSIS

5.1 Bioclastic Mudstone Facies (SK-MF-1)	20
5.2 Algal Miliolin Mudstone-Wackstone Facies (SK-MF-2)	21
5.3 Bioclastic Wackestone Facies (SK-MF-3)	21
5.4 Nummulitic Wackstone-Packstone Facies (SK-MF-4)	22
5.5 Depositional Environment	23

CHAPTER 6

DIAGENETIC FEATURES OF SAKESAR LIMESTONE

6.1 Introduction	26
6.2 Cementation	26
6.3 Fractures	28

CONCLUSION REFERENCES

29 30

FIGURES

Figure 1.1	Map showing the study area (Modified after Raza, 2015)	02
Figure 1.2	Thin Section preparation laboratory of Department of Geology,	04
	University of Peshawar	
Figure 1.3	Photograph displaying the Nikon Polarizing microscope at	04
	Sedimentology Laboratory, NCE in Geology, University of	
	Peshawar	
Figure 2.1	Tectonic map of North Pakistan (Modified after Kazmi and Raza,	06
	1982)	
Figure 3.1	Showing contact between Kingriali Formation, Tredian	09
	Formation, Mianwali Formation and Chidru Formation	
Figure 3.2	Showing oil Seepage of Datta Formation	10
Figure 3.3	Contacts between Datta Formation, Samanasuk Formation, Hangu	11
	Formation and Lockhart Formation	
Figure 3.4	Field illustration showing the sampling trend from Sakesar	12
	Limestone	
Figure 3.5	Red arrows showing the Chert Nodules	13
Figure 3.6	Stratigraphic column of Nammal Gorge	13
Figure 4.1	Showing distribution of different fossils in thin sections	19
Figure 5.1	Showing depositional environment of different microfacies	24
Figure 5.2	Lithology and Microfacies log of Sakesar Limestone.	25
Figure 6.1	Micritic envelop develop around fauna	26
Figure 6.2	Showing transformation of aragonitic shell into low Mg calcite	27
Figure 6.3	Partially altered skeletal grains and Sparry calcite vein	27
Figure 6.4	Showing Isopach Bladed cement (brown) present around the	28
	chambers of bioclast.	
Figure 6.5	Showing Fracture present near the bioclast	28