PETROPHYSICAL ANALYSIS OF MARI DEEP-06, CENTRAL INDUS BASIN, PAKISTAN

By

BARKATULLAH KHATTAK MUHAMMAD UMER MOHSIN RAZA

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

PETROPHYSICAL ANALYSIS OF MARI DEEP-06, CENTRAL INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of BS Geology

BARKATULLAH KHATTAK MUHAMMAD UMER MOHSIN RAZA

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

ABSTRACT

Research work is carried out to evaluate the reservoir potential of Mari deep-06 located in district Ghotki, Central Indus Basin, Pakistan. The Mari gas field was discovered in 1957 by Esso Eastern Inc. (EEI). The Mari deep-06 was drilled up to Lower Goru Formation of Lower Cretaceous age. Well tops and well logs of Mari deep-06 were acquired from Landmark Resources (LMKR). Petrophysical evaluation of Mari deep-06 carried out by selection of zone of interest on the base of crossover between neutron porosity and bulk density while gamma ray also reading low. On the basis of petrophysical analysis, both carbonate and clastic reservoirs are present in the well. One prospect zone has been marked in Habib Rahi Limestone at interval of 2250 to 2494 feet. Two zones at the interval of 8744 to 8758 feet and 8920-8980 feet have been marked in lower Goru Formation. Volume of shale of zone of Habib Rahi limestone is 19.74%, where as 11.05% and 7.4% volume of shale has been calculated in Lower Goru Formation. Effective porosity of zone marked in Habib Rahi Limestone is 18.89% and the porosities of the prospect zones marked in lower Goru formation are 7.6% and 9.5% respectively, zone of Habib Rahi Limestone has little water saturation of about 16.07 and the zone of Lower Goru have 47.78% and 25.97% respectively. Zone marked within both the prospect formation have good effective porosities and so on the basis of calculated petrophysical parameters the pay zones are showing fair to good hydrocarbon potentials.

ACKNOWLEDGEMENTS

We are deeply indebted to many people for their invaluable contributions in this research study for their active encouragement, unconditional support and heartedly cooperation.

In this regard, we would like to express our deepest sense of gratitude to our supervisor Mr. Saqib Mehmood, Assistant Professor, Department of Earth and Environmental Sciences, Bahria University Islamabad for his expert guidance, encouragement and advice throughout the study. We are also thankful for him trusting and giving us a free hand to progress through this venture. Without his positive criticism this endeavor would not have been possible.

We also wish to thanks Professor. Dr. Muhammad Zafar, Head of Department, Earth and Environmental Sciences, Bahria University, Islamabad for his cooperation and guidance. We own a special thanks to Prof. Dr. Tahseenullah Khan Department of Earth and Environmental Sciences, Bahria University for his expert opinion and guidance.

Last but not the least we thank our family for their prayers, honest sacrifices and absolute understanding. We thank them for being the source of constant encouragement which has given us the strength to undertake this very task in the first place.

CONTENTS

	Page
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	vi
TABLES	viii

CHAPTER 1

INTRODUCTION

1.1	General introduction	1
1.2	Exploration history of study area	1
1.3	Development history of study area	2
1.4	Location	3
1.5	Objectives of the study	4
1.6	Data used	4
1.7	Methodology	4

CHAPTER 2

GENERAL GEOLOGY

2.1	Sedimentary basins of Pakistan	5
2.2	Regional structural setting of Central Indus Basin	5
2.3	Stratigraphy of Central Indus Basin	6
2.4	Bore hole stratigraphy	7
2.4.1	Quaternary succession	8
2.4.1.1	Alluvium	8
2.4.2	Tertiary succession	8
2.4.2.1	Siwalik group	8
2.4.2.2	Drazinda member	8

2.4.2.3	Pirkoh Limestone member	9
2.4.2.4	Sirki member	9
2.4.2.5	Habib Rahi Limestone member	9
2.4.2.6	Ghazij Formation	10
2.4.2.7	Sui Main Limestone	10
2.4.3	Paleocene-upper Cretaceous succession	10
2.4.3.1	Ranikot-Pab Formation	10
2.4.4	Cretaceous succession	11
2.4.4.1	Parh Limestone	11
2.4.4.2	Upper Goru	11
2.4.4.3	Lower Goru	11
2.5	Petroleum prospects of Mari Field	12
2.6	Structure style of Mari deep	13
2.7	Petroleum system	13
2.7.1	Source rock	14
2.7.2	Migration	14
2.7.3	Reservoir rock	14
2.7.4	Seal rock	14
2.7.5	Trap	15

CHAPTER 3

PETROPHYSICAL ANALYSIS

3.1	Introduction	16
3.2	Marking zone of interest	16
3.3	Formation evaluation	17
3.3.1	Potential zne marked in Habib Rahi Limestone	17
3.3.1.1	Volume of shale (Vsh)	19
3.3.1.2	Calculation of porosity	20
3.3.1.3	Calculation of resistivity of water (Rw)	27

3.3.1.4	Water saturation	30
3.3.1.5	Hydrocarbon saturation	32
3.4.1	Potential zone marked in Lower Goru Formation	33
3.4.1.1	Zone-01	33
3.4.1.2	Volume of Shale	34
3.4.1.3	Calculation of porosity	35
3.4.1.4	Calculation of resistivity of water (Rw)	40
3.4.1.5	Water saturation	43
3.4.1.6	Hydrocarbon saturation	44
3.5.1	Lower Goru Formation	45
3.5.1.1	Zone-02	45
3.5.1.2	Volume of Shale	46
3.5.1.3	Calculation of porosity	47
3.5.1.4	Water saturation	53
3.5.1.5	Hydrocarbon saturation	54
CONCL	USION	55
REFERE	REFERENCES	
APPENI	APPENDICES	

FIGURES

		Page
Figure 1.1.	Location map showing study area.	3
Figure 1.2.	Work flow conducted during logs interpretation.	4
Figure 2.1.	Stratigraphic column of Lower Indus Basin.	6
Figure 3.1.	Potential zone marked in Habib Rahi Limestone.	18
Figure 3.2.	Volume of shale and sand in Habib Rahi Limestone.	20
Figure 3.3.	Behavior of bulk density and density porosity in Habib Rahi	22
	Limestone.	
Figure 3.4.	Neutron porosity in Habib Rahi Limestone.	23
Figure 3.5.	Sonic porosity in Habib Rahi Limestone.	24
Figure 3.6.	Relationship between average and effective porosity.	25
Figure 3.7.	Porosities comparison of Habib Rahi Limestone.	26
Figure 3.8.	Calculation of Rmf from Gen 9 chart.	28
Figure 3.9.	Calculation of Rweq from SP 1 chart.	29
Figure 3.10.	Calculation of Rw from SP 2 chart.	30
Figure 3.11.	Water saturation in Habib Rahi Limestone.	31
Figure 3.12.	Hydrocarbon saturation in Habib Rahi Limestone.	32
Figure 3.13.	Potential zone-01 marked in Lower Goru Formation.	33
Figure 3.14.	Volume of shale and sand of zone-01 in Lower Goru Formation.	34
Figure 3.15.	Bulk density and density porosity of zone-01 in Lower Goru	35
	Formation.	
Figure 3.16.	Neutron porosity of zone-01 in Lower Goru Formation.	36
Figure 3.17.	Sonic porosity of zone-01in Lower Goru Formation.	37
Figure 3.18.	Average and effective porosities relationship of zone-01 in	38
	Lower Goru Formation.	
Figure 3.19.	Porosities comparison of zone-01 in Lower Goru Formation.	39
Figure 3.20.	Calculation of Rmf from Gen-9 chart.	41
Figure 3.21.	Calculation of Rweq from SP 1 chart.	42
Figure 3.22.	Calculation of Rw from SP 2 chart.	43
Figure 3.23.	Water saturation of zone-01 in Lower Goru Formation.	44
Figure 3.24.	Hydrocarbon saturation of zone-01 in Lower Goru Formation.	45
Figure 3.25.	Potential zone-02 marked in Lower Goru Formation.	46

Figure 3.26.	Volume of shale and sand of zone-02 in Lower Goru Formation.	47
Figure 3.27.	Bulk density and density porosity of zone-02in Lower Goru	48
	Formation.	
Figure 3.28.	Neutron porosity of zone-02 in Lower Goru Formation.	49
Figure 3.29.	Sonic porosity of zone-02 in Lower Goru Formation.	50
Figure 3.30.	Average and effective porosities relationship of zone-02 in	51
	Lower Goru Formation.	
Figure 3.31.	Porosities comparison of zone-02 in Lower Goru Formation.	52
Figure 3.32.	Water saturation of zone-02 in Lower Goru Formation.	53
Figure 3.33.	Hydrocarbon saturation of zone-02 in Lower Goru Formation.	54

TABLES

		Page
Table 2.1.	Stratigraphic column of Mari Deep-06.	7
Table 2.2.	Petroleum play of Mari deep-06.	13
Table 3.1.	Zone of interest thickness, Habib Rahi Limestone.	18
Table.3.2.	Average shale volume, Habib Rahi Limestone.	20
Table.3.3.	Average density porosity and bulk density, Habib Rahi	22
	Limestone.	
Table.3.4.	Average neutron porosity, Habib Rahi Limestone.	23
Table.3.5.	Average sonic porosity, Habib Rahi Limestone.	25
Table.3.6.	Average and effective porosity, Habib Rahi Limestone.	26
Table.3.7.	Average water saturation, Habib Rahi Limestone.	32
Table.3.8.	Hydrocarbon saturation in zone of interest, Habib Rahi	33
	Formation.	
Table.3.9.	Total thickness of zone-01 in Lower Goru Formation.	34
Table.3.10.	Average shale volume of zone-01 in Lower Goru Formation.	35
Table.3.11.	Average density porosity and bulk density of zone-01 in Lower	36
	Goru Formation.	
Table.3.12.	Average neutron porosity of zone-01 in Lower Goru Formation.	37
Table.3.13.	Average sonic porosity of zone-01 in Lower Goru Formation.	38
Table.3.14.	Average and effective porosity of zone-01 in Lower Goru	39
	Formation.	
Table.3.15.	Water saturation of zone-01 in Lower Goru Formation.	44
Table.3.16.	Hydrocarbon saturation of zone-01 in Lower Goru Formation.	45
Table.3.17.	Total thickness of zone-02 in Lower Goru Sandstone.	46
Table 3.18.	Average shale volume of zone-02 in Lower Goru Formation.	47
Table 3.19.	Average density porosity and bulk density of zone-02 in Lower	48
	Goru Formation.	
Table 3.20.	Average neutron porosity of zone-02 in Lower Goru Formation.	49
Table 3.21.	Average sonic porosity of zone-02 in Lower Goru Formation.	50
Table 3.22.	Average and efective porosity of zone-02 in Lower Goru	51
	Formation.	
Table 3.23.	Water saturation of zone-02 in Lower Goru Formation.	53