ESTIMATION OF POROSITY WITH THE HELP OF SEISMIC PROCESSING VELOCITIES OF MEYAL FIELD, UPPER INDUS BASIN, PAKISTAN

By

MAJID ALI SHERAZ IQBAL ZIA UR RAHMAN

Department of Earth andEnvironmental Sciences BahriaUniversity, Islamabad

2016

ESTIMATION OF POROSITY WITH THE HELP OF SEISMIC PROCESSING VELOCITIES OF MEYAL FIELD, UPPER INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Geophysics

> MAJID ALI SHERAZ IQBAL ZIA UR RAHMAN

Department of Earth andEnvironmental Sciences BahriaUniversity, Islamabad

2016

ACKNOWLEDGEMENTS

We would like to pay thanks to our supervisor Muhammad Fahad Mahmood, Department of Earth and Environmental Sciences, Bahria University, Islamabad, for spending this valuable time in providing detailed comments, correction of each wrong step and for solving all issues regarding our thesis, and also giving us an initiative to this study and helped us to complete work.

We are deeply indebted to Dr. Muhammad Zafar, HOD, Department of Earth and Environmental Sciences, Bahria University, Islamabad, for his moral support and guidance to materialize this study.

Last but not the least we are also grateful to our parents for their support and patience during the period of our studies.

ABSTRACT

This thesis is based on 2D seismic reflection data and well logs to find the porosities from seismic velocities and correlate with total porosities from well data. The data is acquired from the area of Meyal, Upper Indus Basin (Punjab) of Pakistan, provided by the Landmark Resources (LMKR) with the permission of Directorate General of Petroleum Concession (DGPC). Five seismic sections having line numbers along with Base Map are 97-MYL-10, 97-MYL-11, 93-MYL-02, 97-MYL-06, and 97-MYL-12 lines. Out of these five seismic lines; 97-MYL-10, 97-MYL-11, 93-MYL-02 and 97-MYL-06 are dip lines. The remaining line, 97-MYL-12 is a strike line. Root mean square are also provided with the seismic section at selected Common Depth Points (CDPS) and are used for the calculation of velocities to convert the given time into depth. Five reflectors were marked due to their prominent reflection on the seismic sections. The two way travel time structural map for each reflector has been drawn and depth contour map of reservoirs has also been drawn by using velocity and one way travel time. Moreover, cross sections in time and depth domains have also been drawn. The Meyalarea is dominated by compressional regime where the thrust faults are dominated. By using well log data of Meyal-08P, the petrophysical analysis was the characteristics of hydrocarbon bearing zone which confirms the results of the 2D seismic interpretation. The porosities calculated from seismic velocities Vp using the relation of Gardner equation to find the density and then applying the Time- Average equation and confirming the result by comparing with the result of porosities from petrophysical analysis. The total porosities are preferred in comparing with seismic velocities because both seismic and total porosities give the overall pore voids in a rock.

CONTENTS

		Page
ACKNOWLEDGEMENTS	i	
ABSTRACT		ii
CONTENTS	iii	
FIGURES	ix	
TABLES	xi	
GRAPHS	xii	

CHAPTER 1

INTRODUCTION

1.1	General statement	1
1.2	Climate of Meyal area	2
1.3	Geography of Potwar area	2
1.4	Exploration history of Meyal field	2
1.5	Data acquired	3
1.6	Objectives	4
1.7	Methodology	4
1.8	Base map	5

REGIONAL GEOLOGICAL SETTING

2.1	Overview	6
2.2	Potwar deformed zones	6
	CHAPTER 3	
	TECTONIC OF THE STUDY AREA	
3.1	The Regional tectonics	8

3.2	Tectonic of Meyal area	9
3.2.1	Major thrust fault	11
3.2.2	Back thrust fault	11

CHAPTER 4

STRATIGRAPHY OF THE MEYAL AREA

4.1	Overview	12
4.2	Formations encountered in well	13
4.2.1	Triassic age	13
4.2.2	Jurassic age	13
4.2.3	Paleocene age	13
4.2.4	Eocene age	14
4.2.5	Miocene age	14

PETROLEUM GEOLOGY

5.1	General statement	16
5.2	Source rock	16
5.3	Reservoir rock	16
5.4	Traps and seals	17
5.5	Maturation	17

CHAPTER 6

SEISMIC ACQUISITION & PROCESSING

6.1	Seismic acquisition		18
6.2	Acquisition parameter	18	
6.3	Spread diagram		19
6.4	Seismic data processing		20

CHAPTER 7

SEISMIC INTERPRETION

7.1	Introduction	22
7.2	Approaches of seismic data interpretation	23
7.2.1	Structural analysis	23
7.2.2	Stratigraphic analysis	24

v

7.3	Interpretation of seismic lines	24
7.4	Interpretation steps	25
7.4.1	Selection of control line	25
7.4.2	Use of velocity window	25
7.4.3	Time depth chart	25
7.4.4	Reflector marking	26
7.4.5	Jump correlation	27
7.4.6	Tying of strike line with dip line	28
7.5	Marking up of faults	32
7.6	Time picking	32
7.7	TWT contour map	32
7.8	Velocity contour map	35
7.9	Depth contour map	39
7.10	3D structure analysis	42

PETROPHYSICAL ANALYSIS

8.1	Objective of the study	43
8.2	Methodology adopted	44
8.2.1	Determination of volume of shale (Vsh)	44

8.2.2	Total porosity	45
8.2.2.1	Density porosity	45
8.2.2.2	Sonic porosity	45
8.2.3	Effective porosity	46
8.2.4	Water saturation	46
8.2.5	Hydrocarbon saturation	46
8.3	Petrophysical interpretation of Meyal-08P (Zone 1)	48
8.4	Petrophysicalinterpretation of Meyal-08P (Zone 2)	53

POROSITY DETERMINITION FROM SEISMIC PROCESSING VELOCITIES

9.1	Overview	58
9.2	Methodology	58
9.2.1	Porosity from well data	60
9.2.2	Porosity from seismic section	61
9.2.2.1	Calculation of velocity for Chorgali Formation	61
9.2.2.2	2 Calculation of density	61
9.2.2.3	3 Calculation of porosity for Chorgali Formation	61

9.2.2.4 Calculation of velocity for Sakesar Formation	62
9.2.2.5 Calculation of density	62
9.2.2.6 Calculation of porosity for Sakesar Formation	62
CONCLUSIONS	66
REFERENCES	67
APPENDICES	70

FIGURES

		Page
Figure 1.1	Map showing location of the study area in the Potwar basin.	1
Figure 1.2	Base map of Meyal area Potwar basin of Pakistan.	5
Figure 2.1	Structural map of the Potwar-sub basin, showing area of investigation	. 7
Figure 3.1	Regional tectonic setting of Pakistan.	9
Figure 3.2	Generalized cross section showing structure through the Potwar.	10
Figure 7.1	Time depth chart for formations encountered subsurface.	26
Figure 7.2	Interpreted seismic section of dip line 97-MYL-06.	28
Figure 7.3	Interpreted seismic section of dip line 93-MYL-02.	29
Figure 7.4	Interpreted seismic section of dip line 97-MYL-11.	30
Figure 7.5	Interpreted seismic section of dip line 97-MYL-10.	31
Figure 7.6	Interpreted seismic section of dip line 97-MYL-12.	31
Figure 7.7	Time contour Map for the reflector of Kohat Formation.	33
Figure 7.8	Time contour Map for the reflector of Chorgali Formation.	33
Figure 7.9	Time contour Map for the reflector of Sakesar Formation.	34
Figure 7.10	Time contour Map for the reflector of Lockhart Formation.	34
Figure 7.11	Time contour Map for the reflector of Datta Formation.	35

Figure 7.12	Velocity contour Map for the reflector of Kohat Formation.	36	
Figure 7.13	Velocity contour Map for the reflector of Chorgali Formation.	37	
Figure 7.14	Velocity contour Map for the reflector of Sakesar Formation.	37	
Figure 7.15	Velocity contour Map for the reflector of Lockhart Formation.	38	
Figure 7.16	Velocity contour Map for the reflector of Datta Formation.	38	
Figure 7.17	Depth contour map for the reflector of Kohat Formation.	39	
Figure 7.18	Depth contour map for the reflector of Chorgali Formation.	40	
Figure 7.19	Depth contour map for the reflector of Sakesar Formation.	40	
Figure 7.20	Depth contour map for the reflector of Lockhart Formation.	41	
Figure 7.21Depth contour map for the reflector of Datta Formation.41			
Figure 7.22	3D structure map of interpreted reflectors.	42	
Figure 8.1 Logs showing zone 1 and 2, Meyal-08P (Chorgali and Sakesar Formations).48			
Figure 9.1	P-wave velocity's relationship to density for different lithologies.	59	
Figure 9.2	Porosity contour map for Chorgali Formation.	63	
Figure 9.3	Porosity contour map for Sakesar Formation.	64	

TABLES

		Pag	e	
Table 4.1Gener	alized stratigraphic column of Meyal field.	15		
Table 6.1Acquisition Parameters utilized for acquiring the data of the study area. 18				
Table 6.2	Spread sequence showing minimum and maximum offset.		19	
Table 7.1	Formation depth and time for MYL-08.		27	
Table 8.1	Well data of Meyal-08P.	43		
Table 8.2	Well tops values of Meyal-08P.		44	
Table 9.1	Matrix, fluid densities and velocities for calculation of velocitie	s.	60	

GRAPHS

		Page	
Graph 8.1	Depth vs Volume of Shale Meyal-08P, Chorgali Formation.		50
Graph 8.2	Depth vs Total porosity Meyal-08P, Chorgali Formation.		50
Graph 8.3	Depth vs Effective porosity Meyal-08P, Chorgali Formation.		51
Graph 8.4	Depth vs Saturation of water Meyal-08P, Chorgali Formation.		51
Graph 8.5	Depth vs Saturation of hydrocarbons, Chorgali Formation.		52
Graph 8.6	Depth vs Sonic Porosity Meyal-08P, ChorgaliFormation.	52	
Graph 8.7	Depth vs Volume of Shale, Sakesar Formation.		54
Graph 8.8	Depth vs Total porosity Meyal-08P, Sakesar Formation.		55
Graph 8.9	Depth vs Effective porosity Meyal-08P, Sakesar Formation.		55
Graph 8.10	Depth vs Saturation of water Meyal-08P, Sakeasr Formation.		56
Graph 8.11	Depth vs Saturation of hydrocarbons, Sakesar Formation.		56
Graph 8.12	Depth vs Sonic Porosity Meyal-08P, Sakesar Formation.		57
Graph 9.1	Velocity calculation of Chorgali Formation.		63
Graph 9.2	Velocity calculation of Sakesar Formation.		64