
On Effectiveness of Fault-Seeding using Interaction
Patterns

Tamim Ahmed Khan
Department of Software Engineering

Bahria University, Islamabad

Email: tamim@bui.edu.pk

Muhammad Muzammal
Department of Computer Science

Bahria University, Islamabad

Email: muzammal@bui.edu.pk

Anas Ijaz
Department of Software Engineering

Bahria University, Islamabad

Email: anas.ijaz@yahoo.com

Abstract—Fault Seeding is a testing technique where faults are
artificially injected into an application to assess the effectiveness,
i.e. if a given test suite is capable of uncovering the injected faults,
of a test suite. This is helpful in establishing confidence in the
test suite and is an alternative to structural testing methods. One
of the issues with fault seeding is the identification of potential
areas in the application, where the faults are to be seeded. We
argue that if the intended usage of the application under test
could be inferred from the potential users’ interactions with
the application, such information could be incorporated into the
fault-seeding process. This could lead to more effective fault-
seeding in a test application. In this work, we study fault seeding
mechanisms based on user interactions with the application; and
thus give a guided fault seeding mechanism for the purpose. We
show the usefulness of the guided fault seeding with the help of
a case study using the blackboard application.

Keywords—fault-seeding, interaction patterns, sequential pat-
terns.

I. INTRODUCTION

Fault seeding is a testing technique to measure the effec-
tiveness of a test suite. It is a white-box testing technique where
we induce faults artificially in the system under test (SUT) and
see if the test suite is capable of uncovering seeded faults. The
testers compare detected seeded faults and undetected seeded
faults to calculate a confidence measure [1] of the test suite;
and then additional test cases are added to the test suite, if
required [2].

One of the issues with the fault seeding approach is the
identification of potential areas in the application, where the
faults are to be seeded. Ideally, we should be able to identify
areas in the application, which are not being executed by any
test case in the test suite. It is rather clear that a relatively
ineffective fault seeding mechanism would be an overhead than
being of any advantage. Thus, ‘random’ fault seeding may not
help as a fault may or may not be seeded in parts of the code
which are not being executed by any test case in the test suite.

We argue, that if the intended usage of the application
under test could be inferred a-priori, it could help in more
effective fault seeding and thus, improving the effectiveness
of the test suite and ultimately the testing process. It is rather
obvious that a test case execution follows some path in the
application and the idea is to detect whether that particular
path has a bug or otherwise. The test suite gives a complete
list of paths which are being followed during the execution of
a test suite. We note that (a) although, testing is a sophisticated

process and the test suite is carefully designed to ensure that
no areas in the application remain untested or under-tested; it
is usually the case that some of the application areas are better
tested than the others; and thus whilst parts of the application
are very well covered in the test suite, some may require
additional testing effort, and (b) the testers’ perspective of the
application usage could be very different from the intended
application users’ application usage. Thus, there should be a
systematic way to incorporate these two factors in the fault
seeding process.

In this paper, we propose a ‘guided’ fault seeding mech-
anisms based on the frequent (or rather infrequent) paths
followed (a) by the test cases in the test suite, and (b) by
the application users’ interaction with the application. This
can give an idea of which parts of the application are of
more interest to (a) the tester and (b) the user; consequently,
identifying application areas that require further attention. To
the best of our knowledge, there is no such study which
suggests that whether ‘random’ fault seeding could be more
effective than the proposed ‘guided’ fault seeding approach,
and this is the objective of this study.

We study the effectiveness of a ‘guided’ fault seeding
mechanism in contrast with the ‘random’ fault seeding ap-
proach. We consider two parameters for the purpose, (a) test
case execution paths, and (b) user-interactions with the applica-
tion. We thus record test case execution paths and also the user
interactions with the application, and then apply a sequential
pattern mining algorithm (see Section II-B for a discussion) to
report the frequent (or infrequent) paths both from test cases
and user interactions, separately. This information is later used
to identify the application areas where the faults are to be
seeded. In the empirical evaluation, we study the usefulness
of the proposed approach in effective fault seeding.

For the purpose of evaluation, we develop a web-based
application which is a Learning Management System (LMS)
designed primarily for instructors. The instructors can add
assignments, quizzes and lecture slides as well as assessments
of students registered for a course. LMS also allows attendance
management and result management. In addition to provision
of these services, LMS records user interactions with the
application as well. This feature is required to extract frequent
paths to identify potential application areas for fault-seeding.
Each control (form, button, etc.) in the application has a
specific ID so that any execution path is uniquely identifiable.
During the test case execution or the user interaction with the
application, the control IDs are recorded in order by LMS

2015 13th International Conference on Frontiers of Information Technology

978-1-4673-9666-0/15 $31.00 © 2015 IEEE

DOI 10.1109/FIT.2015.31

124

2015 13th International Conference on Frontiers of Information Technology

978-1-4673-9666-0/15 $31.00 © 2015 IEEE

DOI 10.1109/FIT.2015.31

119

in a database for each user, which are later extracted in a
time-order manner to serve as input to the sequential pattern
mining algorithm. The sequential pattern mining algorithm
reports frequent execution paths which are later used in the
‘guided’ fault seeding process.

The paper is organized as follows. The background of this
work is discussed in Section II, and our proposed approach
in presented in Section III. The evaluation of the proposed
approach is given in Section IV, whereas the related work is
reviewed in Section V. Finally, we present conclusions and
outlook in Section VI.

II. BACKGROUND

We present background of our work in two subsection
where the former present background to fault seeding and the
later presents data/pattern mining.

A. Fault Seeding

Fault seeding as a technique introduced by Mills (1972)
and explained in [1] in which the probability that our test suite
is capable of finding faults is established as a ratio between
the total seeded and the detected seeded faults during testing.
This helps in calculating confidence C = 1 if n > N and
S/(S − N + 1) if n ≤ N where S is the number of seeded
faults, N is the total number of non-seeded (indigenous) faults
which can be found by N = Sn/s where n is actual number
of non-seeded faults and s is the number of seeded faults
detected during testing. Fault seeding provides an alternative
to structural testing techniques providing us with a measure of
sufficiency of testing or effectiveness of our test suite.

While doing fault seeding, we need to know what types
of faults can be seeded. We have used the error classification
given in [3] in which errors are classified as domainfaults
and computationfaults. A domain fault results from control
flow errors e.g. missing path (absence of missing conditional
statement or clause) or predicate/assignment fault caused by
incorrect decision at a predicate whereas computational faults
occur when computation is wrong yet the path traversed is
correct.

B. Interaction Patterns

Algorithm 1 Sequential pattern mining algorithm

1: Input: Interaction sequence database D and support
threshold θ.

2: Output: All frequent interaction sequences s with support
at least θ.

3: i← 1
4: L1 ← All Frequent sequences of length 1 in D
5: while Li �= ∅ do
6: Ci+1 ← Join Li with itself
7: for all s ∈ Ci+1 do
8: Compute Support of s in D
9: end for

10: Li+1 ← all frequent sequences s ∈ Ci+1

11: i← i+ 1
12: end while
13: Stop and output L1 ∪ . . . ∪ Li

We use Sequential Pattern Mining (SPM) to extract ‘useful’
interaction patterns. Sequential patterns are an important data
mining technique [4], [5] implied in a variety of applications
primarily to understand users’ behaviour. We briefly review the
sequential pattern mining problem in this section. A discussion
on useful applications of SPM is in Section V-B.

The idea of sequential patterns was first proposed by [4]
and the objective was to predict customers’ next purchase in
a retail environment. Agrawal and Srikant [4] proposed the
apriori algorithm to mine sequential patterns, on which they
improved later on by introducing a GSP algorithm [6]. In
this work, we use a variant of the GSP algorithm which is
customized to work with LMS to mine frequent sequences
of paths taken by (a) the test cases in the test suite and (2)
the users. We first introduce a few notations and then give an
overview of the GSP algorithm.

A “click” in LMS is called an item. A sequence is an
ordered list of items. A user sequence U is an ordered list
of items (clicks) by the user. A database D is a collection of
user sequences. A sequence s contains a sequence t if all the
items in t appear in s in the same order as in t, although gaps
are allowed. For example, a sequence 〈a, b, c, d, e〉 supports
a sequence 〈b, c, e〉 whereas it does not support a sequence
〈b, a, d〉. The support of a sequence s is the number of user
sequences U which contain s. A sequence is frequent if it
is supported by at least 0 ≤ θ ≤ |U | sequences. Input to
the problem is a database D of user sequences and a support
threshold 0 ≤ θ ≤ |U |. Ci is the set of candidate sequences of
length i that needs to be tested for being frequent. Li is the
set of candidate sequences which have support at least θ and
thus, are frequent. An overview of the GSP algorithm is in
Algorithm 1. We now briefly discuss the working of the GSP
algorithm.

In the first step, user interactions are loaded in the form
of user interaction sequences. A support threshold θ is also
provided by the user. Initially, all the frequent sequences of
length 1, L1, are discovered (Line 4). Then, the set L1 is used
to generate candidate sequences of length 2, C2, and after
support counting L2 is obtained. For example, two frequent
sequences of length 1, 〈a〉 and 〈b〉, generate four candidate
sequences 〈aa〉, 〈ab〉, 〈ba〉, 〈bb〉, which are then tested for
being frequent. After L2 is obtained, candidate sequences
of length 3 onwards, are generated as follows. For any two
sequences s and s′, if removing the first item in s and the
last item in s′ yield the same remaining sequences, resulting
candidate sequence t is the sequence s appended with the last
item in s′ (Line 6). For example, a sequence 〈ab〉 is joined
with 〈bc〉 to yield a candidate sequence 〈abc〉, whereas 〈ab〉
and 〈ab〉 can not be joined as removing the first item in 〈ab〉
and the last item in 〈ab〉 yield 〈b〉 and 〈a〉, respectively, which
are not the same. Thus, frequent 2 sequences onwards, Ci,
i ≥ 3, are generated by joining Li − 1 with itself, and are
then tested for being frequent (Line 8). The set of frequent i
sequences Li (Line 10) is then used to generate Ci+1 (Line
6) and so on. The mining algorithm continues until no more
frequent sequences could be found. The output is the list of
all frequent sequences (Line 13).

125120

III. OUR APPROACH

We require user interaction history, as a first step, to do
weighted fault seeding. We, therefore, store information about
each event resulting from some input or user click. Overall
schematic is shown in Fig 1

Fig. 1: interaction pattern graph resulting from interaction data
collection

In order to record which interactions have taken place
and in order to construct a graph of events, we assign every
button in the application a specific ID. We consider each form
separately as input and produce paths of each component in
that form as output. In our case, we are using JSF form
components, therefore we convert this algorithm according
to JSF provided methods to extract the graph. Initially, the
algorithm picks up single web page ‘P’ as input and extracts all
Children components. Then this algorithm performs a recursive
loop until it gets sub Children of each child ‘c’ from Children
of P. During this recursion process it adds complete path of
each component into a list L. JSF provides a special method
to extract the complete path of the component. At the end, the
algorithm returns L containing graph of all components of the
given form.

When user clicks on a button within the application,
interaction ID is recoded and at the end of session when
user logs out from their account, the complete interaction by
the user is stored in a time-ordered manner. Every signed-in
user has his own interaction recording list managed by the
application such that IDs stored in database represent different
paths followed by a single user, also called interaction patterns.
This is shown in Listing 1.

Listing 1: Hash Values for Attributes Lists

...
ArrayList<GraphObject> l =
new ArrayList<GraphObject>(m.getCodomainObjects());
for (int i=0; i<l.size(); i++)
{

if (l.get(i).isNode() == true)
{

List<String> result = new ArrayList<String>();
int hCode = l.get(i).hashCode();
result.add(Integer.toString(hCode));
Node n = (Node) l.get(i);
for (int j=0; j<n.getNumberOfAttributes(); j++)

result.add(Integer.toString
(n.getAttribute().hashCode()))

...

Once the interaction related information is acquired, we
represent this information as a graph G = (V,E) where set of
vertices V is the set of controls such as buttons, lists, forms,

etc. and set of edges E denotes the control flow information.
This provides us with a graph like structure as shown in
Figure 2.

Fig. 2: Interaction pattern graph resulting from interaction data
collection

In order to find frequency of interactions, we record how
many times a particular control sequence was adopted during
a user interaction. This provides us with frequent paths for
the application considering a free choice given to the users.
However, in order to provide them a first level of assistance,
user scenarios are developed as part of testing done for the
SUT. We present our interaction pattern extraction mechanism
in Algorithm 2.

Algorithm 2 Regression Analysis

Require: URL of the web service to be tested, test input data
and oracle from previous run
for (i=0; i<num(operations); i++) do

if test passed, result saved in the database then
if actual output from current run = expected output read
from previous run then

test passed, no regression
else

test failed
end if

end if
end for

Recall that whilst doing fault seeding, we need to know
the types of faults to be seeded. As already discussed, we
have used error classification given in [3] in which faults
are classified as domainfaults and computationfaults. We
have seeded faults according to the error distribution given in
[7] and is shown in Table I.

TABLE I: Fault Distribution

Class of Errors %age

Computational 13%
Initialization 13%
Logic/Control 32%
Interface 18%
Data 24%

We use IEEE fault severity definitions as given in [7]
shown in Table II and, in order to avoid system crashes, we

126121

only seed faults of types 3 to 5. Faults could be introduced
in the SUT in a number of ways. Radome fault seeding [8],
through mutation operators in isolated manner [9], through ex-
pert human seeder [2] are examples of fault seeding methods.
We use random fault seeding for the purpose of evaluation of
the usefulness of guided fault seeding.

TABLE II: Fault Severity

Severity Guidelines

1 Catastrophic–Causes system failure or crash
2 Major–Makes the product not useable
3 Moderate–Product usable but bug is customer affecting
4 Minor–Product usable and bug non-affecting
5 Nuisance–Nature of the fault is such that it can be repaired

anytime

Finally, we apply the fault seeding approach considering
the interaction frequencies such that the fault seeding process
follows the same percentage of overall faults as the interactions
frequencies. We present evaluation of guided fault seeding, the
results we obtain and threats to validity of the results in the
forthcoming section.

IV. EVALUATION

We develop a web application, as discussed earlier, for the
purpose of evaluation. Since we intend to evaluate if the guided
fault seeding introduced in this paper, is more effective than
the random fault seeding, we take the following steps:

1) improve test suite until confidence approaches 100%
2) collect frequency of paths in the usage data
3) apply fault seeding considering frequent paths data
4) run test suite and calculate confidence

The overall process followed for evaluation is shown in
Figure 3.

In the first step, faults are seeded randomly to the appli-
cation and test cases are added into the test suite to achieve a
confidence approaching 100%. We process the usage frequency
of different paths in the application for the purpose. We
conduct experiments with university students where they are
requested to use LMS. We introduce LMS to the students by
a brief overview about the application. The users (students in
this study) are familiar with software testing as they have done
modules like software quality engineering, software testing and
software quality assurance. The users are encouraged to report
any errors during the application usage and the reported errors
are recorded. The idea is to obtain the information about the
frequency of different paths in the application.

We solicit this information as follows. For the first group
of users, we let users to use the application in an exploratory
manner. Although we need test suite to evaluate random
fault seeding but we need this experiment for the extraction
of frequent path as well as to get users’ interest in using
application. We informed them about presence of faults before
testing to engage their interest to catch faults as it was given
as a challenge to them. Another advantage of exploratory
application usage is in better understanding of the application
by the user.

For the second set of users, we ask user to use test cases
for the purpose of testing. However, a user could choose the

Fig. 3: process diagram of our evaluation process

module that they want to test. We divide the test suite into
different subsets according to LMS modules, i.e. a subset of
test cases group for attendance system, a subset of test cases
for lecture management, etc. We repeat the set of experiments
with different student groups in order to obtain a reasonable
usage dataset.

Finally, we request student advisers and support staff in
departments within faculty of engineering sciences1 and we
update our frequency of usage data through our second set
of data. We use both sets of data for the evaluation. We also
keep an eye on the outcome of application usage to adjust our
test cases as well as to seed more faults on the application
paths where we are not seeding seeded faults. The results are
presented in Table III

TABLE III: Random Seeding Data

item description value in #

Total test cases 61
Total seeded faults 52
Seeded detected faults 40
Unseeded detected faults 28
Seeded undetected faults 12
New test cases Added for undetected seeded faults 13
Total Test Cases in Updated Suit 74

Now we are ready to perform our experiment which is to
test if guided fault seeding performs better than random fault
seeding. We are guaranteed an outcome since we have test
suite with a confidence 96% with random fault seeding and if
we seed more faults around paths with more (or less) usage

1This research was conducted in Bahria University Islamabad Campus,
Pakistan

127122

frequency, the confidence should not drop and should remain
same. This would mean that the test cases should be able to
find all freshly seeded faults. In case, the confidence drops
down, we find out those areas that have not been executed by
test cases previously and we have eliminated possibilities that
a path is completely free of seeded faults in our discussion
above. All randomly seeded faults are first order faults [10]
whereas faults on frequent and infrequent paths are seeded
in second order because of limited area of code. We present
statistics of fault seeding along frequent paths step in Table IV.

TABLE IV: Guided (frequent) Seeding Data

item description value in #

Total test cases 74
Total seeded faults 52
Seeded detected faults 44
Unseeded detected faults 29
Seeded undetected faults 8

The confidence for this experiment, where we consider
frequent paths, drops down to 59.8%. Next, we consider
weighted faults seeding approach discussed above and the
faults seeded following infrequent paths. We apply the same
test suite and report number of faults escaped our test suite.
We report change in the confidence which was previously at
96% as shown in Table V.

TABLE V: Infrequent testing step data

item description value in #

Total test cases 74
Total seeded faults 52
Seeded detected faults 48
Unseeded detected faults 28
Seeded undetected faults 4

The confidence for infrequent path fault seeding experiment
drops down to 59.8%. The drop in the confidence measure
due to more seeded faults escaping from the test suite shows
limitations of random fault seeding approach. Considering
table IV and table V, it is evident that there were more
seeded undetected faults which escaped in the former case.
The number of test cases in both the cases are 74 which is
due to the fact that we do not intend to add or delete test
cases but we want to see if presence of additional faults would
dent confidence in any way. We have added twelve faults
along (in)frequent paths as shown in table IV and table V.
Finally, We present limitations of our approach. The algorithm
presented in preceding section processes graph resulting from
user interactions. This graph is directly dependent upon the
number of controls and forms present in an application and
hence the application size would dictate the processing time of
the algorithm bearing a quadratic complexity. The experiment
itself needs more interaction data which would do further
conditioning of the results. The results are not stunning in the
sense random fault seeding is already known for compromises
in its own entirety. We, however, propose a novel approach to
fault seeding.

V. RELATED WORK

We first review relevant studies for fault seeding and we
subsequently discuss applications of sequential pattern mining.

A. Fault seeding

Fault seeding is an effective technique to access testing
effectiveness by measuring test coverage [11] where faults
are artificially injected into the application and programmer
keeps track of seeded faults during testing. A difficulty in
this technique is that injected faults must be representative
of the unseeded non-discovered faults [12]. Random fault
seeding is an approach proposed and used in a number of
research e.g., in [11],[13] where faults are seeded randomly on
random location of application. Later these faults are detected
by software testers and developer using test suite. On the basis
of undetected seeded faults, which are not identified by test
suite, we evaluate unseeded remaining faults in application.

Fault seeding through mutation operators in isolated man-
ner is proposed in [14] where a faulty/mutated program is
produced by changing original program by introducing faults
using mutation operators in program. Mutant force the program
to generate different output then original program. The tester,
then kill the mutant using test suite, only if successful. Fault
seeding through expert human seeder is proposed in [15]
the faults are seeded based upon knowledge of programming
language and system nature by the expert. Fault seeding is also
used in [16] where fault seeding is used as a means to evaluate
quality of test suite and as a means to evaluate proposed
methodology. A comparison and an evaluation of fault seeding
techniques is conducted in several research articles e.g., in [17]
where the authors have conducted research to see effectiveness
of various fault seeding methods.

B. SPM applications

Sequential patterns have been used in a variety of ap-
plication domains. For example, in retail environments, se-
quential patterns have been used to predict future customer
purchases [4], for recommending products [18], for shelf
management, etc. Similarly, in stock markets, for predicting
future trends; for fault analysis, in detecting the events which
lead to a failure; in education for examining JAVA code
dependencies [19]; in information retrieval for document cate-
gorization [20] and so on. One interesting class of applications
of sequential patterns is in bio-informatics,e.g. in protein
fold recognition [21], [22], protein function prediction [22],
analysing gene expression data [23], etc. See [24] for a detailed
discussion on applications of SPM.

We now briefly review a couple of useful applications of
sequential pattern mining which are more relevant to this work
in methodology.

In bio-informatics, one such work is on protein function
prediction using sequential patterns [22]. The proposed ap-
proach works in two phases. First, frequent sequences are
mined from a known protein dataset. Next a classifier is used
to predict the function of the sequence. The effectiveness
of the proposed approach is demonstrated with the help of
experiments.

Sequential patterns have been used to design recommen-
dation systems for web users by mining users’ web usage
data [18]. The idea is to find frequent navigation paths and
then suggest the next page that (a) would be accessed by the
user or (b) would be of interest to the user; in order to perform

128123

tasks like web page pre-fetching ((a) above) to improve users’
navigation experience, or recommending products of interest
to the user ((b) above) to improve users browsing experience
and ultimately the sales.

VI. CONCLUSION

Fault seeding is a confidence based technique, as opposed
to structural testing techniques, at white-box level in which
the probability that our test suite is capable of finding faults
is established. This is done by running the application with
seeded faults and finding a ratio between total seeded and
detected seeded faults during testing.

We propose a technique where we gather usage data
from an application to find frequent (or infrequent) paths in
the application. We then compare guided fault seeding with
random fault seeding technique to see the effectiveness of
guided fault seeding. Guided fault seeding is original in the
sense that we not only propose a new approach to fault seeding
but we also evaluate effectiveness of our approach.

Guided fault seeding clearly shows that an analysis of us-
age pattern would be more effective to uncover faults but with
prior knowledge of frequency of usage through the application.
As an outlook, we plan to run experiments with more test
data and with large scale applications to see scalability of our
approach.

REFERENCES

[1] S. L. Pfleeger and J. M. Atlee, Software engineering - theory and
practice (4. ed.). Pearson Education, 2009.

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, Apr. 1997.

[3] W. Howden, “Reliability of the path analysis testing strategy,” Software
Engineering, IEEE Transactions on, vol. SE-2, no. 3, pp. 208 – 215,
sept. 1976.

[4] R. Agrawal and R. Srikant, “Mining sequential patterns,” in ICDE, P. S.
Yu and A. L. P. Chen, Eds. IEEE Computer Society, 1995, pp. 3–14.

[5] M. Muzammal and R. Raman, “On probabilistic models for uncertain
sequential pattern mining,” in ADMA (1), ser. LNCS, L. Cao, Y. Feng,
and J. Zhong, Eds., vol. 6440. Springer, 2010, pp. 60–72.

[6] P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, Eds., Advances
in Database Technology - EDBT’96, 5th International Conference on
Extending Database Technology, Avignon, France, March 25-29, 1996,
Proceedings, ser. LNCS, vol. 1057. Springer, 1996.

[7] F. Grigorjev, N. Lascano, and J. L. Staude, “A fault seeding experience.
argentina: Motorola Global Software Group.”

[8] A. J. Offutt and J. H. Hayes, “A semantic model of program faults,” in
ISSTA, 1996, pp. 195–200.

[9] K. S. H. T. Wah, “Fault coupling in finite bijective functions,” Softw.
Test., Verif. Reliab., vol. 5, no. 1, pp. 3–47, 1995.

[10] Y. Singh, Software testing. New Delhi: Cambridge university, c2012.

[11] N. Lascano and J. L. S. F. Grigorjev, “A fault seeding experience,” in
ASSE-2003, 2003.

[12] B. Boehm and D. Port, “Defect and fault seeding in dependability
benchmarking,” in In Proc. of the DSN Workshop on Dependability
Benchmarking, 2002, pp. Washington, D.C.

[13] J. H. H. A. J. Offutt, “A semantic model of program faults,” in in ACM
SIGSOFT, 1996, 195-200.

[14] K. S. H. T. Wah, “Fault coupling in finite bijective functions,” in Science
of Computer Programming, vol. 5, no. 1, 1995, 3-47.

[15] T. K. Tsai and R. K. I. M.-C. Hsueh, “Fault injection techniques and
tools,” in Computer, vol. 30, no. 4, April 1997, 75-82.

[16] T. A. Khan and R. Heckel, “On model-based regression testing of web-
services using dependency analysis of visual contracts,” in FASE, 2011,
pp. 341–355.

[17] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[18] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Discovery and
evaluation of aggregate usage profiles for web personalization,” Data
Mining and Knowledge Discovery, vol. 6, no. 1, pp. 61–82, 2002.

[19] T. Ishio, H. Date, T. Miyake, and K. Inoue, “Mining coding patterns to
detect crosscutting concerns in Java programs,” in WCRE, A. E. Hassan,
A. Zaidman, and M. D. Penta, Eds. IEEE, 2008, pp. 123–132.

[20] S. Jaillet, A. Laurent, and M. Teisseire, “Sequential patterns for text
categorization,” Intelligent Data Analysis, vol. 10, no. 3, pp. 199–214,
2006.

[21] K. Wang, Y. Xu, and J. X. Yu, “Scalable sequential pattern mining for
biological sequences,” in CIKM, D. A. Grossman, L. Gravano, C. Zhai,
O. Herzog, and D. A. Evans, Eds. ACM, 2004, pp. 178–187.

[22] M. Wang, X. Shang, and Z. Li, “Sequential pattern mining for protein
function prediction,” in ADMA, ser. LNCS, C. Tang, C. X. Ling,
X. Zhou, N. Cercone, and X. Li, Eds., vol. 5139. Springer, 2008,
pp. 652–658.

[23] S. F. Hussain, “Bi-clustering gene expression data using co-similarity,”
in ADMA (1), ser. Lecture Notes in Computer Science, J. Tang, I. King,
L. Chen, and J. Wang, Eds., vol. 7120. Springer, 2011, pp. 190–200.

[24] M. Gupta and J. Han, “Applications of pattern discovery using sequen-
tial data mining,” in Pattern Discovery Using Sequence Data Mining:
Applications and Studies, P. Kumar, P. R. Krishna, and S. B. Raju, Eds.
IGI Global, 2012, ch. 1, pp. 1–23.

129124

