2D SEISMIC INTERPRETATION AND PETROPHYSICAL ANALYSIS OF RAJIAN AREA, UPPER INDUS BASIN, PAKISTAN

By

RAJA HAMMAD KHALID MUHAMMAD NASAR IQBAL MUHAMMAD HARIS SIDDIQUI

Department of Earth and Environmental Sciences, Bahria University, Islamabad

2016

2D SEISMIC INTERPRETATION AND PETROPHYSICAL ANALYSIS OF RAJIAN AREA, UPPER INDUS BASIN, PAKISTAN

A Thesis is submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S. in Geophysics

RAJA HAMMAD KHALID

MUHAMMAD NASAR IQBAL

MUHAMMAD HARIS SIDDIQUI

Department of Earth and Environmental Sciences,

Bahria University, Islamabad

2016

ACKNOWLEDGEMENTS

In the name of Almighty Allah, the most Grateful, Merciful and too blessings of the last Prophet Hazrat Muhammad (P. B. U. H.). We have completed the final report of thesis with the help of Allah.

First, we would like to express our gratitude to our supervisor Mr. Muhammad Fahad Mahmood for the support of our Bachelor's thesis, for his patience, motivation, Excellency, supervision and vast knowledge. He guided us at every point during the thesis work.

Besides our advisor, we would like to thank our colleagues, seniors and teachers for their help, motivation and support and comments. We appreciate their advices, guidance when we were ambushed by the technicalities of the project.

We also want to thank our family especially to our parents for their motivation, encouragement and endless love for supporting in all spheres of life to make us technical and educated men that affected me very much. We thank our parents for their help and support to complete our thesis draft.

ABSTRACT

The study area for this thesis is Missa Kaswal, Gujar Khan, Punjab.The coordinates of the area are 32° N to 34° N latitude and 70° E to 74° E longitude. This area lies in Rawalpindi district, so the climate is similar to Rawalpindi. Oil wells are drilled in Rajian and these wells are at production stage. Rajian is about 80 kilometers south of Islamabad, capital of Pakistan. It lies in the Potwar plateau that is present in Potwar sub-Indus Basin.In this course, we were given five seismic lines of Missa Kaswal; one is strike line and other four are dip lines, and the strike line is also cutting all the four dip lines through the center. One well log data of Rajian 01 also provided. As the well is drilled on the strike line, we have the advantage that the strike line is also the control line and we can easily correlate the data.Rajian is tectonically very compressed area as it is present between Main Boundary Thrust and Salt Range Thrust Fault. It is also surrounded by Kalabagh fault and Jhelum fault. This area is deformed and the traps are mostly structural traps i.e. anticlines, faults, pop-ups etc. The stratigraphy of the area is till Khewra Sandstone (Cambrian age), but every formation cannot be the reservoir. We have studied four possible extractable reservoirs; Khewra Sandstone, Chorgali Formation, and Sakesar Limestone. The best possible reservoir among these formations is Khewra Sandstone that consists of sandstone that has primary porosity and also has the best porosity percentage of up to 15 percent.Different procedures for finding hydrocarbon bearing zone were performed in this project, starting from time-depth charts to the correlation of well logs data and the seismic interpretation to find best reservoirs in this area. Five well log data are analyzed to refine the process for finding hydrocarbons including Caliper log, Spontaneous Potential log, Gamma ray log, Sonic log, Neutron log and resistivity log. With the help of these data, we interpreted Khewra Sandstone as the best reservoir of this area.

CONTENTS

ACKNOWLEDGEMENTS	i
ABSTRACT	ii
FIGURES	ix
TABLES	xii

CHAPTER 1

INTRODUCTION OF STUDY AREA

1.1	Geological overview of the area	1
1.2	Location	2
1.3	Available resources	3
1.4	Base map	3
1.5	Well Data	4
1.6	Seismic lines	5
1.7	Climate	5
1.8	Objectives	6
1.9	Methodology	7

CHAPTER 2

TECTONICS OF POTWAR PLATEAU AREA

1.1	Main Boundary Thrust Fault	8
1.2	Jhelum Thrust	8
1.3	Kalabagh Fault	9
1.4	Salt Range Thrust Fault	9

CHAPTER 3

STRATIGRAPHY OF STUDY AREA

3.1	Stratigraphy of Potwar Basin	10
3.2	Chorgali Formation	12
3.3	Sakesar Limestone	12
3.4	Lockhart Formation	13
3.5	Khewra Sandstone	14

CHAPTER 4

PETROLEUM SYSTEM

4.1	Introduction	15
4.2	Source rock	15
4.3	Oil migration	16
4.3.1	Primary migration	16
4.3.2	Secondary porosity	16
4.4	Reservoir rocks	16
4.5	Traps	17
4.5.1	Structural traps	17
4.5.2	Stratigraphic traps	17
4.5.3	Combination traps	18
4.5.4	Hydrodynamic Traps	19
4.6	Seal	19
4.7	Time	20

CHAPTER 5

SEISMIC DATA ACQUISITION

5.1	Introduction	21
5.2	Seismic Acquisition	22
5.2.1	Source and receiver spread geometry	22
5.2.2	Source	26
5.2.2.1	Impulsive sources	26
5.2.2.2	Non impulsive source	26
5.2.2.3	Source parameters	27
5.2.3	Receivers	27
5.2.4	Recording of Seismic Data	29
5.2.4.1	Recording Parameters	29
5.2.5	Seismic cables	29

CHAPTER 6

SEISMIC DATA PROCESSING

6.1	Introduction	31
6.2	Raw seismic data	32
6.3	Editing	33
6.4	Multiplexed data	33
6.5	Demultiplexed data	33
6.6	Filtering	34
6.7	Geometry Definition	34
6.8	Static Correction / Residual correction	34

6.9	Common depth point / Common Mid-Point	34
6.10	Deconvolution / Inverse Filtering	35
6.11	Velocity Analysis	35
6.12	Normal move out / Dynamic Correction	35
6.13	Amplitude gain control	36
6.14	Stacking	36
6.16	Migration	36

CHAPTER 7

SEISMIC DATA INTERPRETATION

7.1	Introduction	38
7.2	Seismic display and scale	38
7.2.1	Horizontal scale	39
7.2.2	Vertical scale	39
7.3	Base Map	39
7.4	Seismic Interpretation of Rajian Area	40
7.4.1	Control line Selection	41
7.4.1.1	Velocity window analysis on control line	41
7.4.1.2	Time Depth conversion plot	42
7.4.1.3	Horizon marking	44
7.4.1.4	Jump correlation	45
7.4.1.5	Time picking and TWT contour maps	48
7.4.1.6	Velocity picking and velocity contour maps	51
7.4.1.7	Depth calculation and depth contour maps	54

7.5	Fault interpretation
7.6	Hydrocarbon trap

56

57

CHAPTER 8

PETROPHYSICAL ANALYSIS

8.1	Introduction	58
8.2	Objectives	59
8.3	Types of well log	59
8.4	Petrophysical Interpretation of Rajian-01	60
8.4.1	Steps of Petrophysical Analysis	62
8.4.2	Marking the Zones of Interest	63
8.4.3	Calculation of volume of shale	72
8.4.4	Calculation of volume of sand	72
8.4.5	Calculation of bulk density	72
8.4.6	Calculation of neutron density	73
8.4.7	Calculation of average porosity	74
8.4.8	Calculation of effective porosity	74
8.4.9	Calculation of Rw	74
8.4.10	Calculation of true resistivity	75
8.4.11	Calculation of saturation of water (Sw)	75
8.4.12	Calculation of saturation of hydrocarbon (Sh)	76
8.5	Graphical representation	76
8.6	Results	83

CONCLUSIONS	84
REFERENCES	85
ANNEXURE	87

FIGURES

Figure 1.1	Rajian Oil Field, Potwar Plateau, Pakistan (Jadoon, 2014)	2
Figure 1.2	Base map of Rajian area	4
Figure 1.3	Annual average precipitation in Rajian Area	5
Figure 3.1	Generalized stratigraphic column of the Potwar Basin	14
Figure 4.2	Structural traps; anticlinal and fault trap	17
Figure 4.3	Pinch out trap	18
Figure 4.4	Combination traps diagram	18
Figure 4.5	Hydrodynamic traps	19
Figure 4.6	Integration between time and generation of hydrocarbon	20
Figure 5.1	Seismic reflection method	22
Figure 5.2	Source and receiver geometry	23
Figure 5.3	Components of Geophone	28
Figure 5.4	Seismic recording steps	29
Figure 5.5	Geophone with two take out points on either side	30
Figure 7.1	Base map for study area	40
Figure 7.2	T-D chart	44
Figure 7.3	Control line 932-GJN-13 (Interpreted Strike Line)	45
Figure 7.4	Interpreted Dip line 932-GJN-05	46
Figure 7.5	Interpreted Dip line 932-GJN-06	47
Figure 7.6	Interpreted Dip line 932-GJN-12	47
Figure 7.7	Interpreted Dip line 932-GJN-34	48

Figure 7.8	Chorgali Formation TWT contour map	49
Figure 7.9	Sakesar Limestone TWT contour map	49
Figure 7.10	Lockhart Formation TWT contour map	50
Figure 7.11	Khewra Sandstone TWT contour map	50
Figure 7.12	Chorgali Formation velocity contour map	52
Figure 7.13	Sakesar Limestone velocity contour map	52
Figure 7.14	Lockhart Formation velocity contour map	53
Figure 7.15	Khewra Sandstone velocity contour map	53
Figure 7.16	Chorgali Formation depth contour map	54
Figure 7.17	Sakesar Limestone depth contour map	55
Figure 7.18	Lockhart Formation depth contour map	55
Figure 7.19	Khewra Sandstone depth contour map	56
Figure 8.1	Steps of performing Petrophysical analysis	62
Figure 8.2	Zone of Chorgali Formation displaying log curves	63
Figure 8.3	Zone of Chorgali Formation marked on well log	64
Figure 8.4	Zone of Chorgali Formation displaying GR and caliper curves	65
Figure 8.5	Sakesar Limestone marked on well log	66
Figure 8.6	Zones of Sakesar Limestone displaying GR and caliper curves	67
Figure 8.7	All three zones in Sakesar Limestone display Resistivity curves	68
Figure 8.8	Zone of Khewra Sandstone displaying Sonic and GR curves	69
Figure 8.9	Khewra Sandstone displaying Resistivity, GR, and SP curves	60
Figure 8.10	Khewra Sandstone displaying Rho b, GR and caliper curves	71
Figure 8.11	Neutron log displaying the porosity of the formation directly	73

Figure 8.12	Chorgali Formation from 3312 to 3317 meters	78
Figure 8.13	Sakesar Limestone zone 1 from 3385 to 3390 meters	79
Figure 8.14	Sakesar Limestone zone 2 from 3396 to 3400 meters	80
Figure 8.15	Sakesar Limestone zone 3 from 3410 to 3414 meters	81
Figure 8.16	Khewra Sandstone from 3623 to 3644 meters	82

TABLES

Table 3.1	Borehole Stratigraphy of Rajian-01	11
Table 5.1	Source parameters	23
Table 5.2	Receiver parameters	24
Table 5.3	Acquisition Information	25
Table 7.1	Time depth conversion	42
Table 7.2	Formation tops, Time and their equivalent SRD depths	43
Table 7.3	Formation and their respective colors	46
Table 8.1	Types of logs	60
Table 8.2	The results of Petrophysical analysis	83