
On Test Patterns for Cloud Applications

Sidra Siddiqui
Department of Software Engineering

Bahria University, Islamabad, Pakistan
ssqr1790@gmail.com

Tamim Ahmed Khan
Department of Software Engineering

Bahria University, Islamabad, Pakistan
tamim@bui.edu.pk

Abstract—Software testing is an important aspect for the
quality of software. Different levels of experience, types of
application and needs enforce differences in performing testing
activity for same features of applications. Testing as an activity
within a development house usually includes testing of recurrent
situation e.g., testing of security features etc. Development of a
homogeneous test ground requires considering information
regarding the structure of real world scenarios.

We propose a test pattern based technique which supports
identification of test cases on the basis of specification and
domain analysis. The proposed technique provides support for
Test Driven Development (TDD) and Test Last Development
(TLD). We provide test patterns for testing cloud applications
where we study what features an application would bear and we
propose what test cases must exist in the test suite for that
application. For the purpose of evaluation, we consider threats to
cloud applications and discuss test patterns.

Keywords—Test driven development; test last development;
software testing; pattern based testing.

I. INTRODUCTION
Software testing is a complex task in software

development process. In both TDD (Test Driven
Development) and TLD (Test Last Development), each new
update in development procedure of software introduces new
challenges. Pattern based testing models recurrent situations in
testing such as testing access control and provides a structure
which is homogeneous to support testing for these situations.

Patterns are packages of reusable knowledge that can be
used as common efforts to solve problem supporting
reusability [13]. More specifically, patterns are useful to
define something that is recurrent, describe repetitive behavior
and their associated solution [12]. In terms of testing, patterns
are strategies used to conduct testing which can be combined
with existing patterns. They are test templates or test patterns
that have context, intention, situation, action and some results
in the form of test case development, or test case execution.

Pattern based testing previously proposed considers
design, security, GUI, and Defects in [4] [13] [15]. However,
all of these approaches focus on testing of how effectively the
pattern has been implemented or detecting recurrent situation.
The issue regarding standardization of testing need to be
elaborated since we require an experience independent testing
approach so that we are able to consider domain information
as well. Such a testing requires domain analysis with respect

to preset and provided templates, and selects all those that are
applicable. We propose an approach which extends this
concept where we provide detailed description of pattern
structure and how it supports testing in practical. For the
purpose of brevity, we consider Cloud vulnerability study that
provides a good collection of threats in [23] and it presents a
detailed taxonomy of such vulnerabilities. We connect threats
to test patterns and use a case study for demonstrating
usefulness of our approach. This way, we provide support for
TDD as well as TLD and outlines how we can automate
testing using test patterns.

The paper is organized as follows. We present our proposal

in Section II and present our evaluation in Section III. Section
IV is dedicated to case study. Sections V consists of related
work. We; finally, present our conclusion and outlook in
Section VI.

II. OUR PROPOSAL
We consider cloud vulnerability taxonomy as proposed in

[23] and propose a general structure or test patterns. Our
approach comprises of three parts: analysis, processing and
definition. In the analysis stage, we analyze specifications and
domain properties to which application belongs. The aim is to
identify situation and the output of this stage is identification
of positive situation and negative situation of use. Here we
study how users respond to the specification. The next stage is
the processing where the input to this stage is data regarding
situation and result of processing is identification of associated
risks. These risks are grouped in two categories: Sub Category
and main category (low level and high level risks). Processing
stage also helps in identification of low level action which is
performed to achieve a situation of use. Finally, we perform
definition stage where actions and risk are combines together
for generation of test pattern. The other output of this stage is
the identification of application properties which software
application must have for selecting a test pattern to generate
test cases. We call these properties as application subject. The
overall approach is shown in Fig 1. Each pattern has three
basic elements - Situation, Action, Success situation for the
pattern implementation. Template for each pattern must
contain the following attributes:

NAME: To identify test pattern.
TYPE Category: Defines if the test is based on event,
trend or behavior.

2016 International Conference on Frontiers of Information Technology

978-1-5090-5300-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FIT.2016.17

57

2016 International Conference on Frontiers of Information Technology

978-1-5090-5300-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FIT.2016.17

57

2016 International Conference on Frontiers of Information Technology

978-1-5090-5300-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FIT.2016.17

57

Defect Type: Indicates type of defects; after effects of
attacks are described as defects types.

Fig. 1. Approach Flow

Test Pattern Type: It includes type of testing and the
relationship of test with the development level.
GOAL: What testers intend to achieve from this form of
testing
Sub category: Sub category Threats are the low level
attacks which cause the threats of the associated patterns.
These attacks are the basic reason which lead to the pattern
threat
Situation: Actual issue to be tested (i.e. situation of use).
Target: Issues that are expected to be revealed, target
system part and system responses.
Action: Sequence of action need in order to perform the
test. These actions are base for each subcategory in the
form of ACTION 1 and ACTION 2. Otherwise if the
actions for subcategory interact with each other in the joint
fashion they are consider as one set of consolidated
ACTION attribute.
Success criteria: Arrive at required attack.

We study 37 threats [23] related to Services Oriented

Architecture for development of test patterns. In these pattern
we only consider those that can be duplicated in lab
environments. The pattern which we do not consider include
malicious insider, privacy breach, natural disaster, side
channel attack, reliability of data calculation carried out,
misuse of infrastructure, hardware theft, migration of virtual
machine, breach of contractual rights, sanction due to political
issues, and unknown risk profile. Our considered threats
possess describable properties which express their occurrences
or non-occurrences and have manageable cost of testing and
visible outputs. These threats are further subdivided into main
and sub categories of Threats. Sub category threats are low
level attacks which cause threats of associated patterns and
they are also termed as low level risks. These attacks include
examples such as Denial of Service (DoS) attacks, Session

hijacking, Resource contention, Data interruption, Target
modification, Access limit and trust level on shared VM
environment, Hypervisor Compromises, Insecure Interfaces,
Shared Technology Issue, and Discontinuity of external
resources, Virtual machine Image and controlled access.
These threats cover a broad spectrum and are associated with
host, platform, application, infrastructure and administration.
Threats remain the same; however, they have some variation
in parameter of effect at different levels. Examples include
DoS attack at network level will have a similar effect at
application level and Session hijacking at application have
impact at the data level and it also depends on data level issues
for its successful completion. We present our categories, sub-
categories, positive and negative situations of use in Table 1.

TABLE I. CATEGORIES, SUB CATEGORIES, POSTIVE/NEGATIVE
SITUATIONS OF USE

Category Sub-Cat Positive/Negative use
Data
Security
testing, Data
interruption

SQL injection,
updating
without back
up

 Legal Access of required data to
avail system service.
 Access data for illegal use by
exploiting system services.
 Modify data to reflect new update.

Volume
limitation

DOS Attacks,
Connection
flooding,
Resource
usage max
limits.

 Multiple users accessing system.
 Using unavoidable service by
multiple users at the same time.
 Generating multiple request to effect
system integrity
 Authorized user (un)able to access
system.

Target
modification
(intercepting
and
Modifying
message)

XSS Attack,
Redirection,
invalidated
input with
Html
encoding
disable.

 Participate in multi user activity
 Redirecting system to a newer
version of system without info.
 Redirecting system to effect integrity
of system, trust of users, posting
infected reply to infect associated
users.

Session
hijacking

Brute force
profile login,
Access after
session expiry,
Cookie data
access

 Authentication mechanism.
 Keeping session information,
transaction tracking, keeping track of
states during long interaction.
 Stealing user information to hijack
user account, to manipulate user
resources and to generate illegal act
on behavior of user.

Access limit
and trust
level on
shared VM
environment

Resource
usage limit
functionality,
system
response to
unauthorized
user for
critical data,

 Different user rights and access
levels, sharing file, data and
information on common resources
and shared files, Multiple files and
coordinated users and their access
rights.
 Data access levels with different
access controls.
 User role enforcement management.
 Authorized user with unauthorized
data access for modifying, malicious
user can manipulate shared data.

Hypervisor
compromises

Lack of
Intrusion
detection and
prevention,
Rootkit, Data
integrity
verification is
absent.

 Running plug-in on servers or server
driven installation of software which
need antivirus independent
environment.
 Multiple format files uploading and
sever file corruption or virus attack
infect the other guest user.
 An admin access with a rootkit
malware breaching the security and
run malicious code on root system.

585858

 Intrusion to manipulate all files on
server and client system.

Insecure
Interfaces

Visible
passwords,
Lack of data
flushing after
each use, Lack
of control over
API’s use and
data access
limit, lack of
logging
mechanism
for each
usage.

 Login interface to access profiles.
 Keeping track of information for
specific time duration to improve
user experience.
 Avoiding time out and data refresh
on small interval for better user
interactions.
 Visible password to help user to see
what they are typing.
 Third party interaction for payments
or SOA architectures.
 Unencrypted password can lead to
access with unauthorized intention,
Non Flushing of data fields lead to
unwanted access to system. Over
provision of system control through
the API’s to the user, compromises
the system security by allowing
access to critical data.
 Lack of logging mechanism,
unwanted third party access.

Discontinuit
y of external
resources

Connection
lost before
saving
information,
Data server
connection
lost during
storage,
Incomplete
transaction.

 Back up storage and long
transactions.
 Center data point.
 A legal user is trying to store
information but suddenly internet
connection is lost.
 A user has used the system success
fully however, the data center fail to
store the data.

We share data security testing/data interruption test

pattern. The attack can be achieved by an insecure data access
or by manipulating query through SQL injection. SQL
injection facilitates the purpose of invalid unauthorized access
and manipulation of data. A successful execution of SQL
injection on to SOA system indicates that it is vulnerable to
such threats. The proposed data security testing or data
interruption pattern contains subcategories that comprises of
SQL injection and updating data without backup. The after
effects of these attacks are described as defect types. The basic
problem with the system which can successfully be attacked is
the lack of system surveillance towards data manipulation.
The system possesses a weak data manipulation control
channel which leads to the success of such attacks. Table II
shows the pattern.

TABLE II. TEST PATTERN DATA SECURITY

Name Data Security issue testing or Data interruption
Type/category Behavior

Defect types Data mishandling for malicious
manipulation/unauthorized access

Test pattern
type

Threats from real system scenario are applied on
system as test case to check its resistance.

GOAL

- To check the system response on a data security
attack.
- To minimize future risks of data security when
system is deployed.
- Test the system failure limit on data associated
attacks.

Sub category SQL injection, updating without back up

Situation Unauthorized access to data to cause damage to
system security. Minimal system response on data

manipulation may leads to unsaved access or
manipulation without back up causing damage to
system. Allowing user to query by an open access
point can cause injection.

Target

-To uncover system failure in test by applying
threats such as SQL injection and checking system
response.

-Test system by trying to update without back up.

Action

1. Access URL.
2. Pre-Condition: There must be some data in the

database.
3. Choose Input Field
4. Choose the database query.
5. Input: Run a data retrieval query.
6. Get the system response: Output data/ alert.
7. Compare expected and actual response.

Success criteria
-Data is illegally accessed through SQL injection,
deleted from table.
-Data changed without backup request, data lost.

In order to test our pattern, we run the test case which is

shown in Table III. We first access the system, select required
target field and then we choose required data query. We first
choose a valid select query to get data status and check system
response.

TABLE III. GENERAL TEST CASE FOR PATTERN - DATA SECURITY

Test case Example 1

Input 1 Run Select * table 1
Output: Data Data table
Input 2: Data Run Malicious Select Query
Output: response Generate no alert
Output: Data System Critical Data
Expected Output Data
Actual Output Data
Success scenario Expected = Actual

We propose a total of 8 patterns in total covering 37 threats

studied from [23]. We do this for the purpose of brevity and
we submit a complete list of these test patterns1. Our list of
test patterns includes data security, data interruption, volume
limitation, target modification (intercepting and, modifying
message), session hijacking, access limit and trust level on
shared VM environment, hypervisor compromises, insecure
interfaces, and discontinuity of external resources which
encompass all 37 threats and categories shared in [23].

III. EVALUATION
In order to demonstrate the applicability of our proposal, we

conduct case studies of real time projects. We analyze system
requirement specifications and extract features of each project
after analysis. The features define requirements, management,
abilities and core properties. These properties include
attributes such as, authentication, managing multi users,
multiple file, feedback system, back up storage and reboot
mechanisms. We also perform test pattern analysis along with
the feature analysis. This helps us to match identified features
with the test pattern application subject areas and the domain

1 http:www.se.bui.edu.pk/wp-content/uploads/2015/01/patterns.pdf

595959

properties. Merging of these two information support the
defining process of general test cases. To design specific test
cases SRS provides data as shown in Fig 2.

Fig. 2. Evaluation process diagram

We choose Facebook, Dropbox and Moodle. All of these
systems require user sign in mechanism, have multiple users,
manages large amount of data, manages multiple files, have
shared forums and multiple active user and action active at
one time. They support many to many relationships between
services provided and the users. Considering the issue of
privacy, we only run those test cases which Do not affect any
data. All of these popular systems are designed with pre-
mitigation against the basic attacks like SQL injection, XSS
attack and DoS attack. Moreover, these websites are designed
to properly manage role between the users. We divide testing
activity for these systems under test (SUT) into two groups A
and B. A consist of Facebook and Dropbox as SUT and B
consist of Moodle as SUT.

A. Testing Group A
A system which Does not respond positively on a negative

test case (i.e. an attack) is actually previously developed with
immunity to that attack. We analyze SUT and identify
features, services which it provides. The list contains Login,
Manage multiple users, Shared Forums, Initiate multi user
discussion, Upload/ Download file, Upload /Download file on
shared forums, Provide Server storage, and Edit personal
profile data.

As shown in the approach flow shown in Fig 1, the output
of analysis is the identification of situations of use. We
identify expected associated threats which are Password
stealing, Unauthorized access, Profile hijacking, Manipulation
of critical data by unauthorized access, Access limitation and
trust level on shared VM environment, Un awareness of
change, Malicious content propagation, Data interception,
Volume limitation, Target modification, Insecure interface,
Hypervisor compromising and Disconnection of external
resource to terminate transaction.

We map expected threats and services to Table I where
mapping identifies associated categories, subcategories and
associated situation of (mis-)use. The associated patterns are;
insecure Interfaces, discontinuity of external resources, access
limit and trust level on shared VM environment, and
hypervisor compromises. We apply these patterns on our SUT
and run specific test cases. Here we only show one example of
test case in Table IV for the purpose of brevity. The rest of the
test cases can be generated by using out test patterns proposed

general test cases. The overview of the case study is shown in
the Table VI.

TABLE IV. EXAMPLE TEST CASE

Test case Example 1

Reference to general test case Table 20

Input 1 Select the file to upload
Action Disconnect the internet
Actual Output File which was previously uploading

give indication to user to retry.
Expected output File gets lost on next time when system

reboots. System does not provide support
for previous state of user file upload.

Success criteria Actual output=Expected

B. Testing Group B
Moodle manages multiple users with different roles. It is

used for managing content sharing and management in
educational institutes. Moreover, it provides services to
manage concurrent activities such as on-line testing and
assessments. We implement our approach and follow steps as
shown in Fig 1. We analyze system and identify services
which it provides that includes Login, Manage multiple users
e.g., teachers, students, Shard Forums, Manage Courses,
Simultaneous submission and assessments, Initiate multi user
discussion, Upload/ Download file, Upload /Download file on
shared forums, Provide Server storage, Edit user profile data,
Feedback and Notify user on new uploads.

We process the requirements and understand the domain
area. As shown in the approach flow shown in Figure I the
output of analysis is the identification of situation of use. We
have identified the expected associated threats which are listed
as Unauthorized access, Profile hijacking, Brute force access,
Lack of Feedback, Manipulation of critical data by
unauthorized access, Access limitation and trust level on
shared VM environment, Un awareness of critical data
manipulation, Malicious content propagation, Data
interception, Volume limitation, Target modification, Insecure
interface, Hypervisor compromising, and Disconnection of
external resource to terminate transaction.

We map expected threats and services considering Table I
and we find associated patterns which are - data security issue
testing or data interruption, target manipulation, session
hijacking, insecure interfaces, discontinuity of external
resources, access limit and trust level on shared VM
environment, hypervisor compromises. We apply these
patterns on the system and run specific test cases. Here we
only show one example test case in Table V for the purpose of
brevity. The overview of case study is shown in Table VI.

TABLE V. EXAMPLE TEST CASE

Test case Example 1
Input 1 Run Select * table 1
Output: Data Data table
Input 2 Run Select like clause query with addition

606060

information ”q ; Delete from table –“
Output: System response Generate no alert
Output: Data No data
Input 3: Run select * table1
Output: Data No data table deleted
Expected Output No data
Actual Output No Data
Success scenario Expected = Actual

IV. RELATED WORK
UMLsec extension for system development and modeling

were proposed in [6]. New stereotypes of UML were
identified by the author to address security situations.
Comparison of misuse cases with other techniques is proposed
in [11]. Likewise, misuse case support eliciting of security
requirement is proposed in [10].

TABLE VI. TESTING USING TEST PATTERNS RESULT

These security requirements are supported by security

patterns proposed by several researchers. A classification of
these pattern was proposed in [7]. The authors described that

the use of patterns at design level is difficult because detailed
information of vulnerabilities is limited. They argued that
identification of these vulnerabilities at early level can bridge
the gap of security pattern selection and help in testing the
software [5]. Exploiting security or attacker pattern can help in
identification of expected testing. A methodology of modeling
attacker pattern and then using them for testing was proposed
in [5]. XSS attacker pattern is discussed for testing in [18].
Ontology based technique to identify designing pattern is
proposed in [4]. Pattern test case templates (PTCT) are used
for identification of structural test cases for these patterns.
(PTCT) is described as reusable test cases. Such technique
was discussed in [13]. GUI pattern based testing is also
another direction of test patterns discussed in [2] [15]. A
technique proposed in [2] suggests the use of GUI pattern to
generate test case for recurrent situation. Another technique
proposed on [14] uses GUI pattern for anti-pattern testing
technique. [16] [15] authors describe the practical use of GUI
pattern for mobile systems. Along with these patterns, defect
patterns have also been used to support testing [8][9]. The
concept of test pattern was proposed in [1]. However, its
structural definition and practical use description is limited.

The activity of writing test first then code expressed as Test
First (TF) is proposed in [20]. A cycle of test then develop
property provides a short cycle of development [21]. Several
researchers have studied TDD and compared it with traditional
approach to enlighten these aspects [21] [28]. Such
comparison was comprehensively discussed in [21] where the
authors show on a scale of 24 qualitative and 16 quantitative
features the strengths of TDD. They proposed that TDD have
major support of reusability. Flexibility, effectiveness, risk
reduction is highly improved. Moreover, the complexity and
rework cost have been reducing while using the TDD. In TDD
productivity and response to stake holder need to be a better
response [14]. Another comparison was proposed in [20]
where authors prove that there is no difference between the
TLD and TDD. However, they have additionally stated that
TDD has shown more biasness towards positive test cases.

Cloud based systems have a number of vulnerabilities. A
taxonomy of potential threats on the basis of 4 layers;
infrastructure layer, platform layer, application layer and
administration was proposed in [23]. The authors describe 23
threats related to these categories. These threats represent
misuse case of cloud [25]. In order to handle these threats
several researchers have described patterns. A Fire Wall based
pattern i.e. (Cloud Web Application Fire wall pattern
(CWAF)) to handle SQL injection and other data
vulnerabilities were proposed in [24]. The authors have
proposed VM repository and cloud policy management point.
Concept of countermeasure pattern and Threat patterns in
cloud was proposed in [26].

Considering threats shared in [23], we provide a list of
categories and sub categories and our analysis of positive and
negative situations of use in Table I. This allows us to do
processing such that we are able to identify sub category and
super category. The identification of these risks allow us to
provide test patterns. We provide test patterns for each

Sy
st

em

Test Pattern

Negative
responses/
Positive
Responses

Available mitigation

Fa
ce

bo
ok

Insecure Interfaces,
discontinuity of
external resources,
access limit and
trust level on
shared VM
environment,
hypervisor
compromises

System provides
80% of negative
response on the
positive test case.
Corrupted file gets
propagated
infected clients.

Encrypted password.
Feedback procedure.
State management.
User Profile, access
right management.
Different level of
security for different
users.
Role and
responsibility
divisions.

D
ro

bo
x

Insecure Interfaces,
discontinuity of
external resources,
access limit and
trust level on
shared VM
environment,
hypervisor
compromises

System provides
75% of negative
response on the
positive test case.
Corrupted file gets
propagated
infected clients.

Encrypted password.
Feedback procedure.
State management.
User Profile, access
right management.
Back up support.
Offline upload.

M
oo

dl
e

Data Security issue
testing or Data
interruption, Target
manipulation,
Session hijacking,
Insecure Interfaces,
discontinuity of
external resources,
access limit and
trust level on
shared VM
environment,
hypervisor
compromises

System provides
60% of negative
response on the
positive test case.
The system shows
a positive response
to the brute force
access to profile
test case.
System show
negative response
on the positive test
case of feedback
on critical data
manipulation.
The corrupted file
can infect the other
user.

Encrypted password,
managing multiple
user with different
access rights.
Managing multiple
file formats, users and
activities
independently.

616161

category. However, we include only one of them for the
purpose of brevity since inclusion of test patterns for all of the
categories is not possible. Test patterns based testing provides
basis and convenience for TDD and TLD at the same time.

V. CONCLUSION
In this paper, we propose an approach of test patterns for

testing. Test patterns provide template for testing based on
collection of testing best practices and industrial experiences
and can help in achieving high quality. We study previously
identified cloud application threats and provide a mapping of
categories, sub-categories, positive and negative use
situations. This helps us identify test patterns which can be
applied to individual testing situations where we require to
know which patterns are applicable. This helps us to finally
arrive at test cases. Our approach provides a homogenous
ground for testing activity. It provides support for TDD and
TLD.

As an outlook, we plan to link our proposal with
specification level concepts such as use cases and misuse
cases. We also plan to test our approach on bigger case studies
and examples.

REFERENCES
[1] Wang Yi-chen, Wang Yi-kun (2011, June). The Research on Software

Test Pattern. Future Computer Sciences and Application (ICFCSA),
2011 IEEE (pp.109 – 113).

[2] Moreira, R. M., Paiva, A. C., &Memon, A. (2013, November). A
pattern-based approach for GUI modeling and testing. In Software
Reliability Engineering (ISSRE), 2013 IEEE 24th International
Symposium on (pp. 288-297). IEEE.

[3] Coimbra Morgado, I., Paiva, A. C., & Faria, J. P. (2014, September).
Automated Pattern-Based Testing of Mobile Applications. In Quality of
Information and Communications Technology (QUATIC), 2014 9th
International Conference on the (pp. 294-299). IEEE.

[4] Thongrak, M., &Vatanawood, W. (2014, July). Detection of design
pattern in class diagram using ontology. In Computer Science and
Engineering Conference (ICSEC), 2014 International (pp. 97-102).
IEEE.

[5] Bozic, J., &Wotawa, F. (2014, March). Security testing based on attack
patterns. In Software Testing, Verification and Validation Workshops
(ICSTW), 2014 IEEE Seventh International Conference on (pp. 4-11).
IEEE.

[6] Jürjens, J. (2002). UMLsec: Extending UML for secure systems
development. In UML 2002—The Unified Modeling Language
(pp. 412-425). Springer Berlin Heidelberg.

[7] Alvi, A. K., &Zulkernine, M. (2012, August). A Comparative Study of
Software Security Pattern Classifications. In Availability, Reliability and
Security (ARES), 2012 Seventh International Conference on (pp. 582-
589). IEEE.

[8] Li, N., Li, Z., & Zhang, L. (2010, May). Mining frequent patterns from
software defect repositories for black-box testing. In Intelligent systems
and applications (ISA), 2010 2nd international workshop on (pp. 1-4).
IEEE.s

[9] Li, M., Zhang, H., Wu, R., & Zhou, Z. H. (2012). Sample-based
software defect prediction with active and semi-supervised learning.
Automated Software Engineering, 19(2), 201-230.

[10] Sindre, G., &Opdahl, A. L. (2005). Eliciting security requirements with
misuse cases. Requirements engineering, 10(1), 34-44

[11] Ikram, N., Siddiqui, S., & Khan, N. F. (2014, August). Security
requirement elicitation techniques: The comparison of misuse cases and
issue based information systems. In Empirical Requirements
Engineering (EmpiRE), 2014 IEEE Fourth International Workshop on
(pp. 36-43). IEEE.

[12] Yoshioka, N., Washizaki, H., & Maruyama, K. (2008). A survey on
security patterns. Progress in informatics, 5(5), 35-47.

[13] Patterns: from system design to software testingY. Yorozu, M. Hirano,
K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-
optical media and plastic substrate interface,” IEEE Transl. J. Magn.
Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th Annual Conf.
Magnetics Japan, p. 301, 1982].

[14] Kaur, H., & Kaur, P. J. (2014, September). A GUI based unit testing
technique for antipattern identification. In Confluence The Next
Generation Information Technology Summit (Confluence), 2014 5th
International Conference- (pp. 779-782). IEEE.

[15] Coimbra Morgado, I., Paiva, A. C., & Faria, J. P. (2014, September).
Automated Pattern-Based Testing of Mobile Applications. In Quality of
Information and Communications Technology (QUATIC), 2014 9th
International Conference on the (pp. 294-299). IEEE.

[16] Costa, P., Paiva, A. C., & Nabuco, M. (2014, September). Pattern based
gui testing for mobile applications. In Quality of Information and
Communications Technology (QUATIC), 2014 9th International
Conference on the (pp. 66-74). IEEE.

[17] Correa, A. L., Werner, C. M., & Zaverucha, G. (2000). Object oriented
design expertise reuse: An approach based on heuristics, design patterns
and anti-patterns. In Software Reuse: Advances in Software Reusability
(pp. 336-352). Springer Berlin Heidelberg.

[18] Bozic, J., & Wotawa, F. (2013, May). Xss pattern for attack modeling in
testing. In Proceedings of the 8th International Workshop on
Automation of Software Test (pp. 71-74). IEEE Press.

[19] Parveen, T., & Tilley, S. (2010, April). When to migrate software testing
to the cloud. In Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International Conference on (pp. 424-
427). IEEE

[20] Cauevic, A., Punnekkat, S., & Sundmark, D. (2012, September). Quality
of testing in test driven development. In Quality of Information and
Communications Technology (QUATIC), 2012 Eighth International
Conference on the (pp. 266-271). IEEE.

[21] .Bajaj, K., Patel, H., & Patel, J. (2015, October). Evolutionary software
development using Test Driven approach. In Computing and
Communication (IEMCON), 2015 International Conference and
Workshop on (pp. 1-6). IEEE.

[22] .Kumar, S., & Bansal, S. (2013). Comparative study of test driven
development with traditional techniques. Int J Soft Comput Eng
(IJSCE),3(1), 2231-2307.

[23] Hashemi, S. M., &Ardakani, M. R. M. (2012). Taxonomy of the
security aspects of cloud computing systems-a survey. Networks, 2,
1Virtualization.

[24] Fernandez, E. B., Yoshioka, N., &Washizaki, H. (2014). Patterns for
cloud firewalls. AsianPLoP (pattern languages of programs), Tokyo.

[25] Fernandez, E. B., Monge, R. A. U. L., &Hashizume, K. E. I. K. O.
(2013, October). Two patterns for cloud computing: Secure virtual
machine image repository and cloud policy management point. In 20th
conference on pattern languages of programs (PLoP 2013), Monticello,
IL.

[26] Hashizume, K., Yoshioka, N., & Fernandez, E. B. (2011, October).
Misuse patterns for cloud computing. In Proceedings of the 2nd Asian
Conference on Pattern Languages of Programs (p. 12). ACM.

[27] Okubo, T., Wataguchi, Y., &Kanaya, N. (2014, August). Threat and
countermeasure patterns for cloud computing. In Requirements Patterns
(RePa), 2014 IEEE 4th International Workshop on (pp. 43-46). IEEE.

[28] Fucci, D., & Turhan, B. (2013, October). A replicated experiment on the
effectiveness of test-first development. In 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (pp.
103-112). IEEE.

626262

