STRUCTURAL INTERPRETATION AND PETROPHYSICAL ANAYSIS OF MEYAL AREA, UPPER INDUS BASIN, PAKISTAN

By

Abdul Wahab Saadat Samaar Zain Chattha

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

STRUCTURAL INTERPRETATION AND PETROPHYSICAL ANAYSIS OF MEYAL AREA, UPPER INDUS BASIN, PAKISTAN

Thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of BS in Geophysics

Abdul Wahab Saadat Samaar Zain Chatha

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to our supervisor Muhammad Fahad Mahmood for his immense knowledge, continuous support and guidance. Without his patience and guidance, the completion of this dissertation would not have been possible.

We would also like to express our sincere gratitude to Ms Urooj Muyassar for her valuable guidance, keen interest and encouragement at various stages of this research.

At last, we would like to thank our Head of Department Dr. Professor Tahseenullah Khan and Dr. Mohammad Zafar, who gave us opportunity to get practical insight into oil and gas exploration techniques.

ABSTRACT

To develop an understanding of the structural analysis and correlation of seismic data of Meyal area, Upper Indus Basin. 2D seismic reflection data that was required for our research was provided by the Directorate General of Petroleum Concession (DGPC). The area of Meyal lies to the north of Potwar Sub-basin, Upper Indus basin, Pakistan. Pop-Up structural traps were found. Two horizons have been marked, Chorgali and Sakesar Formations of Eocene age. 2D seismic interpretation is carried out manually on the study area and Time & Depth contours are generated. Based on the outcomes of the carried out studies, it is concluded that the area is structurally highly complex and consists of numerous thrust faults that have caused displacement of the strata. Petrophysical analyses reveal that the rock properties are suitable for the formation to act as a reservoir.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
ABSTRACT	ii
FIGURES	vii
TABLES	ix

CHAPTER 1

INTRODUCTION

1.1	Potwar basin	1
1.2	Location of study area	1
1.3	Exploration history of Meyal Oil field	2
1.4	Purpose of study	3
1.5	Data sources	4
1.5.1	Base Map	4
1.5.2	Seismic Lines	5
1.5.3	Well data	5

CHAPTER 2

GEOLOGY AND TECTONICS

2.1	Tectonic setting of Potwar plateau	6
2.2	Structural Trend of Potwar plateau	7
2.3	Structural trend of Meyal	8
2.4	Stratigraphy of Upper Indus Basin	9
2.5	Borehole stratigraphy	11
2.6	Petroleum geology	11
2.6.1	Source rock	11
2.6.2	Reservoir rock	11
2.6.3	Trap and seal Rock	12

CHAPTER 3

SEISMIC DATA ACQUISITION AND PROCESSING

3.1	Types of seismic method	13
3.1.1	Seismic reflection survey	14
3.1.2	Seismic refraction survey	14
3.2	Seismic data acquisition	15
3.3	Seismic surveying acquisition parameters	16
3.3.1	Seismic source parameter	16
3.3.2	Seismic receiver parameter	16
3.3.3	Seismic recording parameter	17
3.4	Seismic Data processing	17
3.5	Objectives	18

CHAPTER 4

SEISMIC DATA INTERPRETATION

4.1	Seismic Interpretation approaches	19
4.1.1	Structural Analysis	19
4.1.2	Stratigraphical analysis	20
4.2	Interpretation Pre-requisite	20
4.2.1	Base Map	21
4.2.2	Quality of Data	21
4.3	Interpretation steps	21
4.3.1	Control line selection	22
4.3.2	Calculation of formation tops with respect to SRD	22
4.3.3	Solving Velocity window for time depth graph	23
4.3.4	Generation of TD chart	23
4.3.5	Reflector identification	24
4.3.6	Jump correlation	24

4.3.7	Fault location identification and marking	24
4.3.8	Time picking	25
4.4	TWT contour mapping	28
4.4.1	Interpretation of Chorgali Formation TWT contour mapping	28
4.4.2	Interpretation of Sakesar limestone TWT contour mapping	29
4.5	Velocity analysis	30
4.6	Velocity contour maps	30
4.6.1	Interpretation of Chorgali Formation Velocity contour mapping	31
4.6.2	Interpretation of Sakesar limestone Velocity contour mapping	31
4.7	Time section to depth section	32
4.8	Depth contour mapping	32
4.8.1	Interpretation of Chorgali Formation Depth contour mapping	33
4.8.2	Interpretation of Sakesar limestone Depth contour mapping	33

CHAPTER 5

WELL ANALYSIS

5.1	Logging objectives	35
5.2	Types of logs	35
5.3	Well specifications	36
5.4	Steps for petrophysical analysis	36
5.4.1	Marking of depth of interest	36
5.4.2	Marking of zone of interest	37
5.4.3	Shale volume calculation	38
5.4.4	Determination of lithology	39
5.4.5	Porosity determination	39
5.4.6	Calculation of average porosity	39
5.4.7	Calculation of effective porosity	39
5.4.8	Water resistivity	39
5.4.9	Water Saturation	40

5.4.10	Hydrocarbon saturation	41
5.5	Petrophysical results	41
5.5.1	Graphical representation of petrophysical analysis	42
CONC	CLUSIONS	45
REFE	RENCES	46

LIST OF FIGURES

Figure 1.1	Location of Potwar basin	1
Figure 1.2	Location map of study area	2
Figure 1.3	Geological map of Meyal oil field	3
Figure 1.4	Base Map of the study area	4
Figure 2.1	Map showing the location of Meyal field in Attock District	7
Figure 2.2	Structures through the Potwar Plateau	9
Figure 2.3	Geological location of study area with Highlighted Meyal block	10
Figure 2.4	Stratigraphy of Meyal	12
Figure 3.1	Seismic survey geometry	15
Figure 3.2	Seismic reflection survey	16
Figure 3.3	Seismic Refraction survey	17
Figure 3.4	Seismic acquisition geometry	18
Figure 3.5	Generalized processing flowchart	24
Figure 4.1	Base map	27
Figure 4.2	Time Vs Depth (TD) chart	30
Figure 4.3	Interpreted strike line GO-801-MYL-07	32
Figure 4.4	Interpreted dip line GO-801-MYL-05	33
Figure 4.5	Interpreted dip line GO-801-MYL-04	33
Figure 4.6	Interpreted dip line GO-801-MYL-03	34
Figure 4.7	TWT contour maps for Chorgali Formation	35
Figure 4.8	TWT contour map for Sakesar limestone	36
Figure 4.9	Velocity contour map for Chorgali Formation	38
Figure 4.10	Velocity contour map for Sakesar limestone	39
Figure 4.11	Depth contour map for Chorgali Formation	40
Figure 4.12	Depth contour map for Sakesar limestone	41
Figure 5.0	Representation of Marked zones of interest	48
Figure 5.1	Volume of shale vs depth	53
Figure 5.2	Neutron-Density porosity vs depth	54
Figure 5.3	Average and effective porosity vs depth	54