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This frame work is established to investigate the thermal management of free convection enclosed in
trapezoidal cavity filled with the water based copper oxide (CuO) nanofluid. As nanoparticles volume
fraction play a significant role to handle the thermal conductivity of any working fluid, so we have
addressed the complex nature real world model that widely used at the industrial level and many other
mechanisms. An identical trapezoidal shape cavity is placed inside the big trapezoidal cavity that have
three various constraints at the surface (cold, insulated and heated). Since bottom wall of the outer cavity
is partially heated so various heated portion tests are applied to analyze the influence of heat transfer
within the entire cavity. Aspect ratio that depends upon the size of the inner cavity is also determine.
Complete and compatible mathematical model is constructed in the form of nonlinear coupled partial dif-
ferential equation. These set of equations are characterized under the law of conservation of mass,
momentum and energy equation along with the restricted domain of the cavity. Koo and Kleinstreuer-
Li (KKL) model is used for effective thermal conductivity and viscosity of the nanofluid. A Galerkin based
Finite Element method (FEM) is implemented to attain the suitable results in term of stream function and
isotherms within the restricted domain of the cavity. Results are also obtained for velocity and temper-
ature of the nanofluid at vertically mean position of the cavity. The simulations are performed for
nanoparticles volume fraction 0 6 / 6 0:2 heated portion length 0 6 LT 6 1 aspect ratio 0:5 6 AR 6 3:0;
Rayleigh number 104 6 Ra 6 105:7; and three heated conditions (cold, adiabatic and hot) for inner trapez-
ium. It is found that flow and thermal field are getting stronger due to increase in Rayleigh number.
However, fluid velocity is decreasing with increasing nanoparticles volume fraction / as the fluid is get-
ting dens. Heat transfer rate is decreasing with the increase in / and LT due to dominant convection.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection heat transfer is an essential necessity in
industries and engineering processes such as heating/cooling pro-
cesses, solar power and chemical reactors. Particularly in the engi-
neering applications, convection is commonly visualized in the
formation of microstructures during the cooling of molten metals,
and fluid flows around shrouded heat-dissipation fins, and solar
ponds. It has been the subject of extensive research for the last
two decades. Fetecau et al. [1] examined natural convection flow
of fractional nanofluids over an isothermal vertical plate with ther-
mal radiation. Al-Mdallal et al. [2] used natural convection for flow
due to condensation on a porous vertical plate using extended
homotopy perturbation method. Peric [3] studied natural convec-
tion in trapezoidal cavities. The numerical study for airflow and
heat transfer for low-turbulence buoyancy-driven flow in a rectan-
gular cavity was studied by Lyi and Hasan [4]. Prasad and Kulacki
[5] studied heat transfer in rectangular porous cavity and effect of
aspect ratio on flow structure numerically. They concluded that
heat transfer rate increases when the aspect ratio increases. Wu
andWang [6] studied natural convection in an inclined porous cav-
ity under time-periodic boundary conditions. Simulations were
carried out recently by Aparna and Seetharamu [7] for heat transfer
flow in trapezoidal cavity using finite element computational
technique.

Heat transfer can be enhanced according to the industrial need
by varying the boundary conditions, boundary layer turbulence
and enhancement in the thermophysical properties of the working
fluid. Enhancing the thermal conductivity of carrier fluid by addi-
tion of nanoparticles is found to be the best promising method in
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this regard. Initially, Maxwell [8] introduced the idea of possibility
of enhancement of thermal conductivity by using small particles
which has some limitations as clogging. Later on, Choi [9] con-
cluded that nanoparticles can increase thermal conductivity of
nay working fluid significantly. Kelbinski et al. [10] investigated
the four techniques contribute to enhance the thermal conductiv-
ity of nanofluids: (i) nanoparticles clustering (ii) heat transport in
nanoparticles (iii) Brownian motion (iv) molecular-level layering
of fluid/particle interface. Aman et al. [11] studied heat transfer
convection flow of Maxwell nanofluid with CNTs nanoparticles.
They observed that thermal conductivity and Nusselt number of
nanofluids get enhance with increasing volume fraction (Tables 2
and 3 of [11]). Aman et al. [12] studied heat transfer MHD flow
of Casson nanofluids along a vertical channel and concluded that
fluid flow decreases with increase in volume fraction.

The above studies were carried out on nanofluids experimen-
tally or theoretically in different geometries. However, studies on
heat transfer of nanofluids in cavities has been a subject of interest
to researchers. Boulahia et al. [13] studied mixed convection heat
transfer of Cu-water nanofluid in a square cavity with heated cylin-
ders. Thermal management of SWCNT-water nanofluid in a par-
tially heated trapezoidal cavity is recently investigated by Haq
et al. [14]. They observed that nanofluids have higher rate of heat
transfer compared to base fluid. Velocity of the fluid increases by
reducing the length of heated portion but thermal field reduces.
Mixed convection nanofluid in a 3D lid-driven trapezoidal cavity
with flexible side surfaces and inner cylinder was analyzed by
Selimefendigil et al. [15]. Alinia et al. [16] numerically examined
mixed convection two phase flow of nanofluid in inclined two-
sided lid-driven cavity. Melting heat transfer influence on nano-
fluid flow inside a cavity is analyzed by Sheikholeslami and Rokni
[17]. Sheikholeslami and Sadoughi [18] studied Mesoscopic
method for MHD nanofluid with different shapes of nanoparticles
inside a porous cavity. Talebi et al. [19] studied mixed convection
flow of nanofluid in a square lid-driven cavity. Boulahia et al. [20]
numerically investigated heat transfer of nanofluid in a lid-driven
cavity. Ben-Cheikh et al. [21] investigated natural convection of
water-based nanofluid in a square enclosure with non-uniform
heating of the bottom wall.

Natural convection in a trapezoidal enclosure filled with carbon
nanotube-EG-water nanofluid was studied by Esfe et al. [22]. Job
and Gunakala [23] investigated MHD mixed convection flow of
nanofluids through a grooved channel with internal solid cylinders.
They used Au-water and SWCNT-water nanofluid and found that
groove area and shape affect fluid flow and temperature. The rate
of heat transfer is proportional to Grashof number at higher Hart-
mann number. In case of SWCNT-water nanofluids the heat trans-
fer rate is higher at higher Reynolds number. Kareem et al. [24]
examined unsteady mixed convection heat transfer in a 3D closed
lid-driven cavity. Haq et al. [25] recently investigated nanofluid in
a partially heated rhombus with square cylinder. They considered
CuO-water nanofluids inside a rhombus cavity containing a square
obstacle and observed that the fluid flow, thermal field and heat
transfer rate are strong for bigger values of Rayleigh number.
Ismael et al. [26] studied mixed convection in square cavity filled
with CuO-water nanofluid. Some of the recent research related to
heat transfer and fluid flow is discussed in the published work
[27–38].

The above literature motivated us to examine natural convec-
tion flow of CuO-water nanofluids in a cavity with inner heated
cavity. The aim of this study is to examine numerically nanofluids
flow and heat transfer in a cavity with inner heated cavity. The top
wall is adiabatic and inclined walls are cold. The bottom wall is
partially heated in the outer cavity. While the inner trapezium
walls are considered to be heated.
2. Mathematical framework

Consider a steady two-dimensional flow of water based nano-
fluid with CuO nanoparticles inside a trapezoidal cavity with an
inner heated trapezium. The enclosure is filled with Copper
oxide-water nanofluid. The bottom wall of outer cavity is partially
heated with constant temperature Th while the inclined walls are
cold with constant temperature TC . The upper wall is insulated
while the inner cavity is with heated walls maintained at constant
temperature Th. Natural convection is considered in this problem
and flow is induced due to buoyancy force together with the exter-
nal pressure gradient. Fig. 1 shows full interpretation of the geom-
etry. In Fig. 2 is the mesh generation that helps to attain the more
accurate results at various corners of the cavity. For more accuracy
and better result, we increase the number of mesh at the corners of
the trapezium and near the partially heated portion. The problem
is modeled in the form of dimensional governing equations as:
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where u and v are velocities along x and y directions, respectively.
Here T� is the temperature, P is the pressure and qnf ;lnf ;bnf ;anf are
density, viscosity, thermal expansion coefficient and thermal diffu-
sivity of nanofluid, respectively. The boundary conditions are:

Along the outer cavity:
At the left and right inclined walls:

T� ¼ TC : ð5aÞ
At the bottom wall:

@T�
@y ¼ 0; x < aL;

T� ¼ Th; x ¼ ðLTÞL;
@T�
@y ¼ 0; x > bL:

8><
>: ð5bÞ

At the top wall:

@T�

@y
¼ 0: ð5cÞ

At all solid boundaries:

u ¼ v ¼ 0: ð5dÞ
Along the inner cavity:
At all surfaces of the cavity:

T� ¼ Th: ð5eÞ
Thermophysical properties for nanofluids are expressed in the

form:

bnf ¼ ð1� /Þbf þ /bp;

qnf ¼ ð1� /Þqf þ /qp;
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Fig. 1. Geometry of the model.
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Fig. 2. Mesh generations at different regions of the cavity.
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where bf ; bp; qf ; qp; ðcpÞf ; ðcpÞp; are thermal expansion coefficient,
density, and specific heat capacity of the base fluid and nano-
particles respectively, which are listed in Table 1. Thermal
conductivity model KKL is considered as defined by Koo and Kle-
instreuer [39].

kn f ¼ kstatic þ kBrownian; ð7Þ
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where the Static part is defined by Maxwell et al. [40] as follows:

kstatic
kf

¼ 1þ 3ðkp=kf � 1Þ/
ðkp=kf þ 2Þ � ðkp=kf � 1Þ/ : ð8Þ

The model for dynamic part is employed as defined by Li [42]:
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ffiffiffiffiffiffiffiffiffiffiffi
jbT0

qpdp

s
n0ðT0;/;dpÞ; T0 ¼ 0:5ðTh þ TcÞ;

ð9Þ
where jb ¼ 1:38� 10�23 J=K is the Boltzmann constant. Here T0 is
the average temperature and dp is the diameter of nanoparticle.
The function n for the nanofluid can be defined as follows:

n0ðT0;/;dpÞ ¼ ða1 þa2 lnðdpÞþa3 lnð/Þþa4 lnð/Þ lnðdpÞþa5 ln ðdpÞ2Þ
lnðT0Þþ ða6 þa7 lnðdpÞþa8 lnð/Þþa9 lnð/Þ lnðdpÞþa10 lnðdpÞ2Þ;

ð10Þ
where the coefficients aiði ¼ 1 . . .10Þ are specified in Table 2.

The effective viscosity under the Brownian motion effects can
be defined as in [24]:

lnf ¼ lstatic þ lBrownian ¼ lstatic þ
kBrownian

kf
� lf

Prf
; ð11Þ

where static part of viscosity is given by Brinkman viscosity model
[41]:

lstatic ¼
lf

ð1� /Þ2:5
: ð12Þ

We utilize the following dimensionless variables in the govern-
ing equations:
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L
; Y ¼ y

L
; U ¼ uL

af
; V ¼ vL

af
; T ¼ T� � TC

Th � TC
;

P ¼ pL2

qfa2
f

; mf ¼
lf

qf
; Pr ¼ v f

af
; Ra ¼ bf ðTh � TCÞL3

v faf
;

ð13Þ

where Ra and Pr denote the Rayleigh number and Prandtl numbers,
respectively. After non-dimensionalization, Eqs. (2)-(4) can be writ-
ten as:
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The associated boundary condition are:
At the left and right inclined walls:

T ¼ 0: ð17aÞ
At the bottom wall:

@T
@Y ¼ 0; X < a;

T ¼ 1; X ¼ LT ;
@T
@Y ¼ 0; X > b:

8><
>: ð17bÞ

where LT is heated length between (a,0) to (b,0). At the top wall:

@T
@Y

¼ 0 : ð17cÞ

At all solid boundaries:

U ¼ V ¼ 0: ð17dÞ
At the surface of inner trapezium:

T ¼ 1: ð17eÞ
The quantity of physical interest Nusselt number for the par-

tially heated domain of trapezium is defined as:
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Z
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� knf
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@T
@n

dX; ð18Þ

where ‘‘n” is the normal direction at the heated surface of trapezium
(LT ). For inner heated cavity, length L is replaced by four sides of
trapezium L1; L2; L3 and L4.

3. Numerical procedure

This complex nature model is inspected numerically via Finite
Element Method along with the Galerkin technique as defined by
Taylor and Hood [43]. By replacing the pressure term with
P ¼ �c @U

@X þ @V
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� �
; the governing Eqs. (14) and (15) may be written

as:
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4. Results and discussion

In order to obtain the fluid flow and heat distribution within the
cavity, we have plotted the streamlines and isotherms behavior.
The heat transfer rate at the surface of the cavity is given by
Nusselt number. Numerical simulation is executed for
Rayleigh number ð104 6 Ra 6 105:7Þ; nanoparticles volume fraction
ð0 6 / 6 0:2Þ; aspect ratio ð0:5 6 AR 6 3Þ; partially heated bottom
portion ð0:2 6 LT 6 1:0Þ and three different constraints (cold, adia-
batic and heated) at the outer surface of inner cavity.

Fig. 3 depicts the behavior of isotherms and streamlines due to
cold, adiabatic and heated inner trapezium. In Fig. 3(a)-(c), two
symmetric boluses represent the streamlines of the nanofluid.
The bolus size increases and spread in the whole cavity when going
through cold to hot inner trapezium, the streamlines get stronger.
In Fig. 3(d), nanofluid near the heated portion is hotter than the
remaining large part which is colder as the inner cavity is cold.
In Fig. 3(e), for adiabatic inner cavity, the heat transfer is stronger



Table 2
The coefficient values of nanofluids.

Coefficients ai CuO-water Coefficients ai CuO-water

i ¼ 1 �26.5933108 i ¼ 6 48.40336955
i ¼ 2 �0.403818333 i ¼ 7 �9.787756683
i ¼ 3 �33.3516805 i ¼ 8 190.24561009
i ¼ 4 �1.915825591 i ¼ 9 10.9285386565
i ¼ 5 �0.006421858 i ¼ 10 �0.72009983664
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Fig. 3. Variation of (a)-(c) Stream lines w and (d)-(f) isotherms for various conditions (cold, adiabatic and heated) defined at the inner trapezium when LT ¼ 0:4;/ ¼ 0:1 and
Ra ¼ 105.

Table 1
Thermophysical properties of water and nanoparticles.

Properties CuO Water

q (kg/m3) 6500 997.1
cp (J/kg K) 540 4179
k (W/mK) 18 0.613
b (K�1) 29 21
dp (nm) 45 –
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boluses have larger size compared to Fig. 3(d). In Fig. 3(f), heat
spreads in the cavity except the cold inclined walls and makes
most of the fluid hot near the heated cavity and partially heated
bottom wall.

Variation of Nusselt number of the outer trapezium, tempera-
ture and velocity with three kinds of heated conditions are pre-
sented in Fig. 4(a)-(f). Fig. 4(a) shows that Nusselt number has
highest profile at adiabatic condition following by that of heated
inner cavity while it has the lowest profile for cold inner cavity.
Moreover, Nusselt number has higher value. For adiabatic inner
cavity, Nusselt number is highest. Fig. 4(b) shows temperature
profile is increasing while going from cold to heated inner
trapezium. Fig. 4(c) depicts that fluid flow increases while going
from cold to heated condition of inner trapezium because for
heated inner trapezium, most of the fluid is hot and convection
augments.

The impact of length of heated portion on isotherms and
streamlines are depicted in Fig. 5(a)-(h). The streamlines get stron-
ger in Fig. 5(a)-(d) and bolus size increases as we increase the
length of the heated portion. In Fig. 5(e)-(h), with increasing heated
portion length the temperature of the fluid increases and iso-
therms becomes more distorted. The thermal plume near the inner
heated cavity is small for LT ¼ 0:2 and spreads towards the upper
portion for higher values of LT . The maximum absolute values for
stream function at different lengths are 6.4942 (LT ¼ 0:2), 6.798
(LT ¼ 0:4), 7.786 (LT ¼ 0:7) and 7.862 (LT ¼ 1:0), clearly showing
the increasing strength of streamlines with increasing heated
length.

Fig. 6(a) shows that the variation of Nusselt number of the inner
cavity with the heated length of outer trapezium for various sides
of the inner trapezium walls. It is obvious that Nusselt number
decreases with increasing length of partially heated side of outer
trapezium. When length of heated wall increases, it augments
thermal conductivity and conductive heat transfer becomes
dominant, due to which Nusselt number reduces. Additionally,
we can see that Nusselt number attains a highest value at the
bottom wall L1 while at the top wall of the inner cavity L3, the vari-
ation of Nusselt number is very small as it is far from the heated
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length of outer trapezium. Moreover, Nusselt number has higher
values at the corners of each side. Fig. 6(b) shows the temperature
profile variation with heated length of the bottom wall of outer
trapezium. By increasing the heated length, temperature profile
rises near the heated length whereas a small variation in the
temperature is observed at the upper portion of the trapezium.
Fig. 6(c) depicts variation of Nusselt number with heated length
for the outer cavity. Nusselt number is decreasing with increasing
heated length.

For various values of Rayleigh number, the streamlines for the
CuO-water nanofluid flow are given by Fig. 7(a)-(c). The hot fluid
near the inner heated cavity rises in the middle of the trapezium
and falls near the cold walls which create rotation in the form of
two symmetrical boluses. At higher values of Ra the strength of
streamlines enlarges resulting in large number, size and develop-
ment of the convective cells in the cavity. At Ra ¼ 104; the stream-
lines are small whereas they are enlarged at higher values of
Ra ¼ 105 and Ra ¼ 105:7; cover the whole cavity which shows the
intensification of convective flow and heat transfer. The maximum
values of stream function are 1.4033 at Ra ¼ 104, 6.8015 at
Ra ¼ 105 and 16.415 at Ra ¼ 105:7. Fig. 7(d)-(f) depicts the impact
of Rayleigh number Ra on the temperature field of Cu-EG nanofluid.
In Fig. 7(d) the isotherms are smooth at low Rayleigh number,
showing that the convection is dominant and it induces heat
transfer. The portion between the heated inner obstacle and
partially heated bottom shows strong buoyancy effects while going
towards the boundaries fluid temperature decreases. The convec-
tion mode is dominant for higher values of Rayleigh number,
which is prominent from the hot surfaces. It is since Ra is the ratio
of momentum and thermal diffusivity multiplied by the ratio of
buoyancy and viscosity forces. The isotherms are non-smooth in
Fig. 7(e) and (f). As Rayleigh number augments the distortion of
the isotherm becomes larger and leads to intensify the convective
flow. The buoyancy effects are stronger in the upper portion of the
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cavity and thermal plumes are generated. It is obvious in these two
figures that fluid in the whole cavity becomes more heated com-
pared to Fig. 7(d).

Fig. 8(a)-(d) shows the variation of Nusselt number, tempera-
ture and velocity with Rayleigh number. In Fig. 8(a), the Nusselt
number increases with increasing Rayleigh number due to domi-
nancy of buoyancy forces. Fig. 8(b) shows alteration of Nusselt
number with Rayleigh number for different sides of inner trapez-
ium. It can be seen that Nusselt number augments with Rayleigh
number and it attains the highest value for Ra ¼ 105:7:
Moreover, the highest variation is found for the bottom wall L1
of the inner cavity. For L2 and L4 there is sufficient variation while
at L3 there is a small variation in Nusselt number. Fig. 8(c) and (d)
shows variation of temperature and velocity distribution respec-
tively with Rayleigh number for different mean positions (verti-
cally) of outer trapezium. Both temperature and velocity profiles
are increasing with Rayleigh number. Velocity has highest value
at Ra ¼ 105:7:

Fig. 9(a)-(f) depicts the behavior of streamlines and tempera-
ture with variation in / for fixed value of Ra ¼ 105 and LT ¼ 0:4:
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In Fig. 9(a)-(c) the strength of streamlines becomes strong with
increasing nanoparticles volume fraction and covers the whole
cavity. For Ra ¼ 105 the buoyancy effects and heat transfer are
dominant, hence the smallest bolus size augments with increas-
ing volume fraction /: Two symmetric boluses are formed due
to the imposed boundary conditions in the cavity. In isotherms
the inner cavity is heated and bottom wall of outer cavity is
partially heated. Isotherms show that fluid near the inside
heated obstacle and bottom partial heated portion is hot for
/ ¼ 0. For / ¼ 0:1 and / ¼ 0:2, thermal plumes generate near
the inside obstacle due to the increase in thermal conductivity
of the nanofluid. The isotherms are more contorted in Fig. 9(e)
and (f).

Fig. 10(a)-(d) depicts the variation of Nusselt number,
temperature and velocity with volume fraction of nanoparticles.
Fig. 10(a) is considered with respect to bottom heated surface
of outer trapezium and shows that Nusselt number decreases
when volume fraction augments. In fact, increasing volume
fraction enhances thermal conductivity and thus conduction
becomes dominant which reduces Nusselt number. In Fig. 10(b),
Nusselt number variation decreases with the volume fraction of
nanoparticles, at side L3 a small decrease/variation is observed
while highest at L1: Temperature profile is decreasing between
the mean positions 0 and 0.25, while it enhances between 0.25
and 0.4. Temperature profile attains the highest values at mean
positions 0.4 and 0.6. After crossing the inner cavity the temper-
ature is increasing with volume fraction, depending on the mean
position of outer trapezium. Velocity has lowest profile in the
absence of nanoparticles and increases with volume fraction of
nanoparticles.
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Fig. 11(a)-(h) shows the effect of aspect ratio AR of the inner
trapezium on the streamlines and isotherms for fixed values of vol-
ume fraction / ¼ 0:1, heated length LT ¼ 1:4 and Rayleigh number
Ra ¼ 105: It is spotted that streamlines become weak with increas-
ing values of AR: The bolus size becomes smaller while going from
AR ¼ 0:5 to AR ¼ 3. Isotherms show that heat dispersed in the
entire cavity with the increase in values of AR. In fact, for a larger
inner heated obstacle the fluid becomes hotter in the areas near
inner trapezium, bottom wall and inclined walls. Heat plumes
can be seen for AR ¼ 1 and AR ¼ 2 in the upper portion of the cav-
ity. The isotherm maximum absolute value reaches 0.9720 for
AR ¼ 3.

Fig. 12(a)-(g) shows the variation of velocity profiles U and V
with variation in aspect ratio AR considering the inner trapezium
to be heated. As the aspect ratio AR of the inner trapezium
increases, the fluid velocity U squeezes and the distortion
increases. More boluses can be seen due to high value of Rayleigh
number, Ra ¼ 105.
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Fig. 13(a)-(f) shows 3D presentation for the impact of three
heat conditions of inner trapezium on the stream function and
isotherms. The varying phenomenon of heat concerned to the
nanofluid inside the cavity can be significantly observed here.
The streamlines for the cold inner trapezium possess shape of
two cones demonstrating that the nanofluid is hot near the bot-
tom wall and cold in other areas. For adiabatic inner obstacle,
convection is stronger than cold inner trapezium while for heated
inner trapezium heat transfer is maximum. In Fig. 13(c), most of
the portion of nanofluid is hot and boundary layer becomes thick.
Fig. 13(d)-(f), temperature of the nanofluid increases while
going from cold to heated inner trapezium. There is one heated
portion for cold inner obstacle in Fig. 13(c) while heat dispersed
for the adiabatic inner trapezium in Fig. 13(b). In Fig. 13(f)
temperature and convection is dominant as we see two heated
cloudy portions showing the dominancy of heat and convection
near the inner trapezium and bottom wall of outer cavity. It
makes the nanofluid hotter in the entire cavity except in
small portion near the inclined cold walls where the fluid
remains cold.

Fig. 14(a)-(d) shows the 3D variation of isotherms with various
heated portions of outer cavity. It is evident that increasing the
length of heated portion increases the heat of the nanofluid. For
LT ¼ 1:0; heat dispersed in the entire cavity is showing high tem-
perature isotherms.

5. Conclusion

In the present numerical study, the CuO-water nanofluid flow
inside the trapezium cavity with inner heated obstacle was
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Fig. 13. Three-dimensional variation of (a)-(c) Stream lines w and, (d)-(f) isotherms for various conditions (cold, adiabatic and heated) defined at the inner trapezium when
LT ¼ 0:4;/ ¼ 0:1 and Ra ¼ 105.
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investigated and the problem was solved numerically using Finite
Element Method. In this model we have determine the These sim-
ulations are executed for various lengths of heated portion
ðLT ¼ 0:2—1:0Þ; Rayleigh number ðRa ¼ 104—105:7Þ; nanoparticles
volume fraction ð/ ¼ 0—0:2Þ; Aspect ratio ðAR ¼ 0:5—3Þ and differ-
ent kinds of inner square cylinder (cold, adiabatic and hot). It is
concluded that flow field, thermal field and heat transfer rate are
getting stronger due to increase in Rayleigh number. The fluid
velocity is decreasing with increasing nanoparticles volume frac-
tion / as the fluid gets denser. Heat transfer rate is decreasing with
the increase in / and LT due to dominant convection. For greater
heated length of outer trapezium, thermal plumes generate and
convection is dominant with distorted isotherms. Temperature
profile is higher at the bottom of trapezium, while lower at the
upper side of the inner cavity.
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