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Abstract 

The objective of present research work is to analyze the homogeneous-heterogeneous reactions on 

the MHD two-dimensional stagnation-point flow of non-Newtonian Prandtl fluid flow and heat 

transfer towards horizontal linear stretching sheet. The governing boundary layer equations using 

similarity transformation are reduced to ordinary differential equations suitable to be solved using 

Finite Difference Method. The quantities of interests are thoroughly analyzed under the effects of 

various emerging parameters. Comparison of the results obtained from limiting case of present model 

with already existing literature is in good agreement which shows the validity of the present numerical 

solution. The study concludes that homogeneous and heterogeneous reaction strength decreases the 

heat transfer rate. On the other hand, Prandtl fluid parameter and elastic parameter increases heat 

transfer rate. 

Keywords: Homogenous-heterogeneous reactions, nanoparticles, Prandtl fluid, stretching sheet, 

numerical solution. 

1. Introduction 

Two main classifications of fluids are Newtonian and non-Newtonian. The later differs from the 

former in the sense that it does not obey the Newton’s law of viscosity. Such types of fluids are 

encountered by us in our daily life. Honey, paint, toothpaste and fresh concrete are among few of 

them. For further insight into the study of non-Newtonian fluids and its applications the readers are 

referred to read the book of [1]. So far, the researchers have been engaged in both experimental and 

mathematical investigation. In present paper we shall present the brief review of various kinds of 

non-Newtonian models that have been under consideration. Moreover, as a scope of this paper, we 

shall stick to the non-Newtonian fluid flow over different kinds of stretching surface. The 

non-Newtonian fluids under investigation are Sisko fluid [2], Casson fluid [3-4], Carreau fluid [5], 

Maxwell fluid [6], Williamson fluid [7], Oldroyd-B fluid [8], Jeffery fluid [9], second-grade fluid [10].  
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The focus of present article is on the non-Newtonian Prandtl fluid. Literature survey reveals that 

not much attention has been pain to the flow and heat transfer characteristics of Prandtl fluid. Akbar et 

al. [11] studied the MHD stagnation-point flow of Prandtl fluid over shrinking sheet. The numerical 

solutions revealed the dual mathematical solutions. Soomro et al. [12] considered the Prandtl 

nanofluid flow to study the passive control of nanoparticle near the horizontal stretching surface. 

Effect of chemical reactions on the 3D Prandtl fluid over flat surface was studied numerically by 

Kumar et al. [13].  

Chaudhary and Merkin [14] developed a model contains homogeneous-heterogeneous reactions in 

the two-dimensional stagnation point boundary layer flow. The homogeneous reaction was given by 

cubic autocatalytic reaction while on the catalyst surface first order reaction was considered. A 

numerous number of chemical reactions involving such reactions have many practical applications, 

such as biochemical systems and combustion. Significant studies have been done one the 

homogeneous-heterogeneous reactions effects on the flow and heat transfer over stretching surface 

utilizing both Newtonian and non-Newtonian fluid models. Khan et al. [15] considered Casson fluid 

model to study the homogeneous-heterogeneous reactions on the stagnation-point flow and heat 

transfer over stretching surface. Williamson fluid flow over convective stretching surface involving 

homogeneous-heterogeneous reactions was taken into consideration by Ramzan et al. [16]. In another 

study [17], homogeneous-heterogeneous reactions effects on the flow and heat transfer over stretching 

cylinder was analyzed. Non-stagnant Prandlt fluid over the stretching sheet was examined by Khan et 

al. [18] under the effects of homogenous-heterogeneous reactions. The detailed analysis on the 

comparison between magnetic and non-magnetic nanoparticles suspended nanofluid flow and heat 

transfer characteristics under the effects of homogeneous-heterogeneous reactions was carried out by 

Abbas et al. [19]. Analytical study was carried out by Hayat et al. [20] on the melting heat transfer 

characteristics of Newtonian viscous fluid over the stretching sheet of variable thickness utilizing the 

effects of homogeneous-heterogeneous reactions. 

Insight into the literature depicts that the homogeneous-heterogeneous reaction effects on the flow 

and heat transfer of stagnation-point Prandtl fluid flow and heat transfer has not been studied before. 

So the purpose of present research work is to seek it numerical solution using Finite Difference 

Method which is analyzed for the quantities of interest against emerging physical parameters. 

Mathematical Framework 

Let us consider two-dimensional stagnation-point flow of a Prandlt fluid in the presence of 

chemical reaction over linear stretching sheet. The fluid is incompressible, steady and confined to 

cartesian plane ( 0)y > . Fluid flows along positive -axisy  and meets the plane 0y = . Induced 
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magnetic field is neglected due to low Reynolds number in comparison to applied magnetic field 

normal to the stretching sheet. The extra stress tensor for the Prandtl fluid is given by:   

1
2

1/ 2
2 2

1
arcsin

1/ 2
2 2

u v
m

m y x

u v

y x

u

y
τ

      ∂ ∂ +        ∂ ∂        

    ∂ ∂ +       ∂ ∂     

∂
=

∂
,               (1) 

where 1m  and 2m  are material constants of Prandtl fluid model. As ��	is nonzero due to fraction 

however �� can be any constant and for Newtonian fluid it can be zero.  In the present model we 

incorporate the model of homogenous-heterogeneous reactions: 

2

1

2

2 3 ,    rate ,

,              rate ,

a b

a

A B B k C C

A B k C

+ → = 


→ =                               (2)

 

where a
C  and b

C  denotes the concentration of the chemical species A  and B , whereas 1k  and 

2k are the rate constants, respectively. After necessary boundary layer approximation the governing 

equations of our model may be written as follows: 
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with associated boundary conditions:  
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where ( ),u v  is the usual notation for the cartesian coordinates velocity components, wu
 
is the velocity 

of stretching sheet, u∞  
is the ambient fluid velocity, T  is the temperature of the fluid, wT  is the 
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stretching sheet temperature, T∞  is the ambient fluid temperature, density ρ  of fluid, kinematic 

viscosity ϑ  of the fluid, electrical conductivity σ  of the fluid, thermal diffusivity *α  of the fluid, 

homogeneous heat reaction H∆ , Stoichiometric coefficient for heterogeneous reaction A A
δ  of 

species, Diffusion coefficients of two species A
D  and B

D , thermal conductivity T
k  of the fluid, and 

a  and b  are dimensional constants. Introducing the following similarity transformations [14]: 
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where, stream function ψ  is define in the form of u yψ= ∂ ∂  and v xψ= −∂ ∂ . It can be verified 

easily that equation of continuity (2) is identically satisfied and equations (3) to (5) along with (6) take 

the following form:  
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The dimensionless form of boundary conditions relative to the defined model is,  
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where, prime indicates the differentiation with respect to ,η  1 2
m mα =  is Prandtl fluid parameter, 

3 2 3

1 22a x m mβ ϑ=
 
is elastic parameter, 2

0M B aσ ρ=  is magnetic parameter, r b a=  is the 

stagnation parameter, Pr aϑ=  is the Prandtl number, ( )( )( )3

1
1

h A p
k H C C a Tγ δ ρ ∞= ∆ ∆  is the 

homogeneous reaction heat parameter, A
Sc Dϑ=  is the Schmidt number, 2

1
K k C a∞=  is the 

homogeneous reaction strength parameter, B A
D Dζ =  is the ratio of diffusion coefficients, c aλ =  

is the stretching ( 0)λ >  or shrinking ( 0)λ <  parameter, ( ) ( ) ( )
1 2

2T T h A
K k C k T H aδ ϑ∞= ∆ ∆  is the 

thermal conductivity with respect to homogenous reaction and ( )
1 2

2S A
K k D a ϑ=  is the 

heterogeneous reaction strength parameter. 

We further consider the special case where diffusion coefficients of chemical species A and B  
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are comparable. We assumed that diffusion coefficient A
D  and B

D  are equal, that is, 1ζ = . Hence we 

deduce the following identity. 

( ) ( ) 1g hη η+ =                                           (15) 

Using equation (15) in equations (12) – (14) we get 
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Subject to the boundary conditions 
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Expressions for skin friction coefficient fC  and local Nusselt number Nu  are:  
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where, wτ  and wq  are the stress tensors and heat flux, respectively: 
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Dimensionless form of equation )13(  take the form: 
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where, Re w
x

u x

ϑ
= is local Reynolds number based on the stretching velocity ( )

w
u x . 

2. Numerical Procedure 

Numerical experiment is performed over non-linear coupled ordinary differential equations (10 - 

13) along with boundary conditions (14) using Finite Difference Scheme called Keller Box Method 

[21]. The method is second-order accurate and discretizes the given non-linear ordinary differential 

equation into the system of first-order differential equations. Newton’s iteration method is used to 

counter the non-linearity of the equation. The resulting linear system is solved using any 

block-tridiagonal procedure. The method has been applied successfully to solve the non-linear coupled 

differential equations by Soomro et al. [22]. In present simulation the uniform step size of 410−  and 

truncation error tolerance of 810−  was used. After initial experimental analysis it was concluded to 

restrict the infinite domain to η = [0, 8] to show the convergence of the solution profiles. Results are 

validated through numerical values of skin friction coefficient with previous published work mentioned 

in Table 1.  

3. Results and Discussion 



  

6 

 

3.1 Effects on velocity profiles 

Figs. 2 and 3 describe the nanofluid velocity change due to variation in pertinent physical 

parameters. It can be seen from profiles trend that increase in Prandtl fluid parameter, stagnation 

parameter and stretching parameter enhances the nanofluid velocity. It should be noted that increase in 

elastic parameter also enhances nanofluid velocity when 1r = . Moreover, Fig. 3(a) shows that, there 

is different effect on the nanofluid velocity for different range of stagnation parameter. It is observed 

that, due to increase in elastic parameter, nanofluid velocity decreases when 1r >  whereas it 

enhances when 1r < . Increase in magnetic parameter has decreasing effect on the nanofluid velocity 

(Fig. 2(a)). Thermal boundary layer thickness of nanofluid decrease due to increase in magnetic 

parameter, elastic parameter and stretching parameter. On the other hand, no significant effect on the 

velocity boundary layer thickness is seen due to variation in stagnation parameter. 

3.2 Effects on coefficient of skin friction 

Impact of emerging physical parameters on the coefficient of skin friction can be seen from the 

Fig. 4. Skin friction increases due to increase in Prandtl fluid parameter, elastic parameter, stretching 

parameter and magnetic parameter. On the other hand it tends to decrease due to increase in stagnation 

parameter. Furthermore, it is observed from Fig. 4 (b) that at comparatively high stagnation parameter 

value the skin friction value tends to increase at higher rate due to increase in elastic parameter. The 

behavior is vice versa for comparatively low value of stagnation parameter.   

3.3 Effects on temperature 

Fluid temperature distribution due to variation in contained physical parameters is depicted 

through Fig. 5. Temperature of fluid tends to enhance due to increase in the value of magnetic 

parameter, thermal conductivity parameter and homogeneous reaction parameter. On the other hand, 

decreasing effect is observed on the fluid temperature due to increase in Prandtl number, Prandtl fluid 

parameter and elastic parameter. Moreover, thermal boundary layer thickness tends to decrease due to 

increase in magnetic parameter, elastic parameter, Prandtl number and Prandtl fluid parameter. On the 

other hand, thermal boundary layer thickness increases due to increase in homogeneous reaction 

parameter and thermal conductivity parameter.   

3.4 Effects on Nusselt number 

Due to increment in various physical parameters the effects on the Nusselt number can be seen 

from Fig. 6. Heat transfer rate tends to decrease due to increase in magnetic parameter, homogeneous 

reaction stretching parameter and heterogeneous reaction strength parameter. On the other hand, due 

to increment in Prandtl fluid parameter, elastic parameter, stagnation parameter, thermal conductivity 

parameter and Schmidt number the Nusselt number tends to increase.  
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4. Conclusion 

Non-Newtonian Prandtl fluid stagnation-point nanofluid fluid flow under the 

homogeneous-heterogeneous reactions was analyzed in present research work. The physical problem 

was modeled into the mathematical form in terms of partial differential equations which were 

transformed into the set of nonlinear ordinary differential equations using similarity transformations. 

Finite Difference Method was utilized to seek the numerical solution of such set of equations. 

Nanofluid velocity, skin friction, temperature distribution and heat transfer rate was analyzed against 

the varying value so the emerging physical parameters. It was observed that increase in homogeneous 

and heterogeneous reaction strength decreases the heat transfer rate. Increase in thermal conductivity 

due to homogeneous reactions enhances the heat transfer rate. As a result more temperature is 

transferred to the surrounding fluid which enhances its temperature.  
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Table 1: Comparison of skin friction coefficient for stretching case	���. 
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 = 0,� = 1, � = 0 

Present results Mahapatra and Nandy 

[23] 

Wang [24] Lok et al. [25]  

0.0 1.2326 1.2326 1.2326 - 

0.1 1.1466 1.1466 1.1466  

0.2 1.0511 1.0511 1.0511  

0.5 0.7133 0.7133 0.7133 0.7133 

1.0 0 0 0 - 

2.0 -1.8873 -1.8873 -1.8873 -1.8873 

5.0 -10.2648 -10.2648 -10.2648 -10.2648 
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Fig. 1: Geometry of the model. 

 

Fig. 2: Effects of physical parameters on velocity.

 

Fig. 3: Effects of physical parameters on velocity. 
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Fig. 4: Effects of physical parameters on coefficient of skin friction. 

 

Fig. 5: Effects of physical parameters (a) Hartmann number, (b) elastic parameter and (c) conductivity 

with respect to homogenous reaction on temperature profile. 

 

Fig. 6: Effects of physical parameters on Nusselt number.  
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Research Highlights: 
• Phenomenon is implemented for Prandtl fluid model. 

• Homogenous-heterogeneous reaction are analyzed for nanoparticles at the surface. 

• Ratio of diffusion coefficients effects are also incorporated within the nanofluid. 

• Behavior of emerging parameters play a vital role in Homogenous-heterogeneous 
reaction. 

 




