2D SEISMIC INTERPRETATION AND PETROPHYSICAL ANALYSIS OF GUPCHANI AREA, LOWER INDUS BASIN, PAKISTAN

By

MUHAMMAD ASIM KHATTAK SHAHAB UD DIN AFRIDI

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

2D SEISMIC INTERPRETATION AND PETROPHYSICAL ANALYSIS OF GUPCHANI AREA, LOWER INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Geophysics

MUHAMMAD ASIM KHATTAK SHAHAB UD DIN AFRIDI

Department of Earth and Environmental Sciences Bahria University, Islamabad

2016

ABSTRACT

The present study area of Gupchani is located in Nawabshah block of Lower Indus Basin, Pakistan which is located in the southwestern periphery of Indian plate. Regional tectonics of area indicates deformation caused by extensional forces during the rifting phase of Indo-Australian plate from Gondwanaland. These forces caused the formation of various normal faults in the area that resulted in the displacement of strata of widely varying ages in close proximity throughout Lower Indus Basin. The faults also resulted in the formation of some structural traps in the area.

The dissertation focuses on delineating those subsurface structures and analyzing the resulting displacement utilizing contour maps for time and depth. 2D seismic interpretation is carried out manually on the study area and Time and Depth contour maps are generated. Moreover the Petrophysical properties of the area are studied to determine the hydrocarbon potential in order to carry out the structural and stratigraphic interpretation of Gupchani area. Three dip lines and two strike line were interpreted. TWT and depth mapping helped in delineating the structural trend and understanding the tectonics of the area. Subsurface mapping reveals that the major fault trend is NNW-SSE. Tectonic activity continued throughout the deposition of Lower Goru – Khadro level. Existing structural trend of the area provides basic component of a profile petroleum system.

The outcomes of study concluded that the area has few normal faults that have caused displacement of strata. Petrophysical analysis reveals that the rock properties of Chiltan and sands of Lower Goru are suitable to act as reservoir. Faults are also helping in the formation of hydrocarbon traps. The main constituents of petroleum system are present but there is still a requirement of advance techniques to improve seismic resolution and quality of interpretation.

ACKNOWLEDGEMENTS

Our supervisor Fahad Mahmood and Co-Supervisor Saqib Mahmood are greatly thanked for teaching their skills and expertise in carrying out Petrophysical analysis of logs data and 2-D seismic interpretation. Critical and constructive methodology adopted by him proved beneficial for gaining maximum knowledge from this opportunity.

Sincere acknowledgements go to Dr. Muhammad Zafar, Head of Department of Earth and Environmental Sciences, Bahria University, Islamabad for their valuable knowledge, assistance, cooperation, kind attention and guidance throughout the completion of our degree.

We would like to thank our parents for their help and support. They continuously backed us up during the completion of this dissertation.

CONTENTS

	Page
ABSTRACT	Ι
ACKNOWLEDGEMENTS	Ii
FIGURES	Vi
TABLES	Viii

CHAPTER 1

INTRODUCTION

1.1	Location of study area	1
1.2	Data obtained for interpretation	2
1.3	Objectives of research	2
1.4	Methodology	3

CHAPTER 2

TECTONIC SETTINGS OF THE AREA

2.1	Regional tectonic settings	4
2.2	Structural styles of southern Indus Basin	6
2.2.1	Thar Platform	6
2.2.2	Karachi Trough	6
2.2.3	Kirthar Foredeep	7
2.2.4	Kithar Fold Belt	7
2.2.5	Offshore Indus	7

CHAPTER 3

STRATIGRAPHY OF LOWER INDUS BASIN

3.1	Precambrian sequence	9
3.2	Paleozoic sequence	9
3.3	Triassic sequence	9
3.3.1	Wulgai Formation	10
3.4	Jurassic sequence	10
3.4.1	Shirinab Formation	10

3.4.2	Chiltan Formation	10
3.5	Cretaceous sequence in the Southern Indus Basin	12
3.5.1	Sembar Formation	12
3.5.2	Goru Formation	12
3.5.3	Parh Formation	12
3.6	Cretaceous-Tertiary unconformity	13
3.7	Paleocene sequence	13
3.7.1	Khadro Formation	13
3.7.2	Ranikot Formation	13
3.8	Eocene sequence	13
3.8.1	Laki Formation	14
3.8.2	Kirthar Formation	14
3.9	Petroleum geology of area	16

CHAPTER 4

SEISMIC ACQUISITION AND PROCESSING

4.1	Seismic acquisition and display parameters	17
4.2	Processing sequence	18

CHAPTER 5

SEISMIC INTERPRETATION

5.1	Introduction	21
5.2	Approaches of seismic interpretation	21
5.2.1	Structural analysis	21
5.2.2	Stratigraphic analysis	22
5.3	Structural interpretation	22
5.3.1	Seismic lines	22
5.3.2	Seismic data	23
5.3.3	Targets and well	23
5.4	Steps in seismic interpretation	24
5.4.1	Data QC	24
5.4.2	Horizon picking	25

5.4.3	Time depth chart	25
5.4.4	Marking structures	26
5.4.5	Marking reflectors	26
5.4.5.1	Control line	27
5.4.5.2	Tie points	27
5.4.6	Time contouring	32
5.4.7	Depth conversion	35
5.4.8	Velocity calculation and velocity contouring	36
5.4.9	Depth contouring	38

CHAPTER 6

PETROPHYSICAL ANALYSIS

6.1	Purpose and uses	41
6.2	Petrophysical analysis	41
6.3	Flow chart of Petrophysical analysis	41
6.4	Marking of zones of interest	43
6.5	Identification of lithology	43
6.6	Calculation of volume of shale (Vsh)	43
6.7	Calculation of resistivity of water (Rw)	43
6.8	Saturation of water (Sw)	44
6.9	Porosity calculation	44
6.10	Petrophysics of Miran-01	45
6.10.1	Lower Goru Formation	45
CONCL	USIONS	53
REFERI	ENCES	

FIGURES

		Page
Figure 1.1.	Location showing study area.	1
Figure 1.2	Flow chart for seismic interpretation methodology.	3
Figure 1.3	Flow chart for petrophysical interpretation methodology.	3
Figure 2.1.	Regional tectonic Map of Pakistan.	5
Figure 2.2.	Tectonic map of Lower Indus basin.	8
Figure 3.1.	General stratigraphy of Lower Indus Basin.	11
Figure 3.2.	Borehole stratigraphy of Miran-01.	15
Figure 4.1.	Seismic processing flowchart.	20
Figure 5.1.	Base map and orientation of seismic lines.	23
Figure 5.2.	Time depth chart for Khadro, Lower Goru and Chiltan	
	Formation.	25
Figure 5.3.	Interpreted seismic dip line (Control Line) 911-GP-16.	28
Figure 5.4.	Interpreted seismic dip line 911-GP-47.	29
Figure 5.5.	Interpreted seismic dip line 911-GP-48.	30
Figure 5.6.	Interpreted seismic strike line 911-GP-52.	31
Figure 5.7.	Interpreted seismic strike line 911-GP-04.	32
Figure 5.8.	Time contour map of Khadro Formation.	33
Figure 5.9.	Time contour map of Lower Goru Formation.	34
Figure 5.10.	Time contour map of Chiltan Formation.	35
Figure 5.11.	Velocity contour map of Khadro Formation.	37
Figure 5.12.	Velocity contour map of Lower Goru Formation.	37
Figure 5.13.	Velocity contour map of Chiltan Formation.	38
Figure 5.14.	Depth contour map of Khadro Formation.	39
Figure 5.15.	Depth contour map of Lower Goru Formation.	39
Figure 5.16.	Depth contour map of Chiltan Formation.	40
Figure 6.1.	Flowchart of petrophysical analysis of Miran-01.	42
Figure 6.2.	Volume of sand and volume of shale of Lower Goru	
	Formation.	47
Figure 6.3.	Average Porosity of Lower Goru Formation.	48
Figure 6.4.	Effective Porosity in Lower Goru Formation.	49

Figure 6.5.	Neutron porosity in Lower Goru Formation.	50
Figure 6.6.	Density Porosity of LoweR Goru Formation.	51
Figure 6.7.	Saturation of water and saturation of Hydrocarbon with	
	depth of Lower Goru Formation.	52

TABLES

		Page
Table 1.1.	Seismic and well data available for interpretation.	2
Table 3.1.	Petroleum play of the area.	16
Table 4.1.	Acquisition parameters adopted for the seismic lines of	
	Gupchani area.	17
Table 4.2.	Display parameters adopted for the seismic lines of	
	Gupchani area.	18
Table 4.3.	Processing parameters adopted for the seismic lines of	
	Gupchani area.	19
Table 6.1.	Averages of Vsh, Vsand, Ephi, density prrosity, Sw and	
	Sh of Lower Goru Formation.	46