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Abstract
No reference image quality assessment (NR-IQA) is a challenging task since reference images are usually unavailable
in real world scenarios. The performance of NR-IQA techniques is vastly dependent on the features utilized to predict the
image quality. Many NR-IQA techniques have been proposed that extract features in different domains like spatial, discrete
cosine transform and wavelet transform. These NR-IQA techniques have the possibility to contain redundant features, which
result in degradation of quality score prediction. Recently impact of general purpose feature selection algorithms on NR-
IQA techniques has shown promising results. But these feature selection algorithms have the tendency to select irrelevant
features and discard relevant features. This paper presents fifteen new feature selection algorithms specifically designed
for NR-IQA, which are based on Spearman rank ordered correlation constant (SROCC), linear correlation constant (LCC),
Kendall correlation constant (KCC) and root mean squared error (RMSE). The proposed feature selection algorithms are
applied on the extracted features of existing NR-IQA techniques. Support vector regression (SVR) is then applied to selected
features to predict the image quality score. The fifteen newly proposed feature selection algorithms are evaluated using eight
different NR-IQA techniques over three commonly used image quality assessment databases. Experimental results show
that the proposed feature selection algorithms not only reduce the number of features but also improve the performance of
NR-IQA techniques. Moreover, features selection algorithms based on SROCC and its combination with LCC, KCC and
RMSE perform better in comparison to other proposed algorithms.

Keywords No-reference image quality assessment · Feature extraction · Feature selection · Perceived quality ·
Computational intelligence

1 Introduction

In the past decade rapid spread of image acquisition and
communication technologies have paved the way for a broad
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spectrum of applications in the field of compression, health
care, social networks etc. Images are subject to a variety
of distortions in the acquisition, compression, transmission
or reproduction phase [1]. Quality evaluation of images is
essential for guaranteeing quality of experience to an end
user in many applications. Image quality assessment (IQA)
is broadly divided into subjective and objective techniques.
Image quality assessment performed by human beings is
known as subjective IQA and has the advantage of being
highly accurate and reliable, but renders it inapplicable to
majority of the applications due to tedious and expensive
nature of the task, high consumption of time and non-
reproducible nature of results. On the other hand, objective
IQA techniques evaluate the perceptual quality of the image
in terms of quality score that correlates with subjective
IQA using computational models [1]. Various objective
IQA techniques have been proposed that can be categorized
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into full reference (FR), reduced reference (RR) and no
reference (NR) IQA techniques [2].

FR-IQA [3–8] techniques require reference image to
perform IQA whereas, RR-IQA [9–12] techniques evaluate
the quality of an image using partial information about the
original undistorted image. Mean square error and peak
signal to noise ratio are among the most commonly used FR-
IQA techniques because they are computationally efficient
and perform IQA pixel wise. However, FR-IQA do not
show high correlation with subjective IQA [1]. Structural
similarity index measure (SSIM) [13] is considered to be
a turning point in the development of FR-IQA techniques,
which is based on universal quality index. SSIM works
under the assumption that human visual system is highly
sensitive to the structural information in the image. SSIM
is extended to multi-scale and is named as MS-SSIM [14].
Information-content weighting is introduced in MS-SSIM
to develop IW-SSIM. SSIM map is constructed using local
weights assigned based on the information content in the
local patches of the reference and distorted images. In
[15], visual information fidelity (VIf) index is introduced,
which is an extended version of the information fidelity
criterion (IFC) index [16]. Both IFC and VIf compute
image quality based on information fidelity and aim to
measure the similarity between the reference and distorted
image. Utility of FR-IQA and RR-IQA techniques in real
world applications is limited due to the requirement of
reference image to perform IQA [1]. NR-IQA techniques
are also known as blind image quality assessment (BIQA)
techniques and they solve this problem because they do not
require the reference image to assess the quality of image [1,
17–22].

The main objective of NR-IQA techniques is to extract
quality aware features from distorted images and then
utilize machine learning tools to map these features to a
quality score. Natural undistorted images are statistically
regular and highly structured, which is disrupted in the
presence of distortion [23]. Features that measure deviation
in characteristics between distorted and undistorted images
are called natural scene statistics (NSS) and are the most
popular features adopted by NR-IQA techniques. Various
NR-IQA techniques based on NSS features have been
proposed, which extract features in the discrete cosine
transform (DCT), spatial, wavelet and curvelet domain.
In [24], DCT based NSS features are extracted at two
scales to assess the quality score of image using Bayesian
inference model. Features are extracted over six orientations
and across two scales using wavelet transform in [23], to
predict image quality score. Locally normalized luminance
features and their products are extracted in spatial domain

to perform IQA in [25]. In [17], maximum value of log of
histogram and energy of scale and orientation are extracted
in curvelet transform to evaluate the quality of images.
In [26], Gaussian magnitude and Laplacian of Gaussian are
used with support vector regession (SVR) for IQA. In [27],
8 × 8 patches of the image are used to compute spatial and
spectral entropies. In [1], perceptual structural features and
luminance based features are utilized with a SVR model
for evaluating the quality of an image. Non-negative matrix
factorization is used in [28] to measure distortion in the
image along with extreme learning machine for assessing
the quality of images. In [29], multi-threshold local tetra
pattern is used to extract changes in spatial distribution and
Weber Laplacian of Gaussian is used to model changes in
intensity contrast for the purpose of NR-IQA.

All the aforementioned techniques extract features in
different domains but does not focus on obtaining optimum
features. The performance of NR-IQA techniques declines
and shows lower correlation with mean observer score
(MOS) in the presence of irrelevant and redundant features.
Feature selection algorithms reduces the feature vector
length by discarding redundant and irrelevant features.
Therefore, feature selection is vital in improving the
performance of NR-IQA techniques by selecting relevant
features, which improve their prediction capability and
result in higher correlation with MOS. Feature selection
have been used in various domains such as forensic feature
analysis [30], implementation of an efficient algorithm for
k-barrier coverage based on integer linear programming
[31], and detection of fingerprint liveliness [32] to improve
the overall performance of the system. Recently, impact of
feature selection algorithms on NR-IQA has been explored
in [33], which shows improvements in the prediction of
quality score of existing BIQA techniques. The feature
selection algorithms used are random search, linear forward
selection, genetic search, incremental wrapper feature
subset selection with the Naive bayes classifier and particle
swarm optimization. As all the feature selection algorithms
used in [33] are generic and are not specifically proposed
for NR-IQA, which may result in selection of irrelevant
features and rejection of relevant features. Therefore,
feature selection algorithms specifically designed for NR-
IQA are required, which selects most relevant features to
improve the prediction of quality score.

In this paper, we propose fifteen new feature selec-
tion algorithms based on correlation and error parame-
ters namely Spearman ranked order correlation constant
(SROCC), linear correlation constant (LCC, Kendall corre-
lation constant (KCC) and root mean squared error (RMSE).
The NR-IQA framework used in this paper extracts fea-
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tures using existing NR-IQA techniques, selects features
based on the newly proposed feature selection algorithms
and predicts the quality score based on the selected fea-
tures using SVR. The proposed algorithms are tested on
eight state-of-the-art NR-IQA techniques that extract fea-
tures in different domains. Furthermore database and NR-
IQA technique independence is also established in order
to evaluate the effect of proposed feature selection algo-
rithms on NR-IQA. The contributions of this paper are as
follows

1. New correlation and error based feature selection
algorithms are proposed for NR-IQA.

2. Effect of proposed feature selection algorithms on NR-
IQA techniques is studied.

3. Proposed feature selection algorithms improve the
image quality score prediction capacity of NR-IQA
techniques by showing low error and high correlation
with mean observer scores.

The rest of the paper is organized as follows. Section 2
explains related work on NR-IQA techniques. Section 3
discusses newly proposed feature selection algorithms for
NR-IQA. Section 4 presents the experimental results on
three commonly used subjective IQA databases over eight
NR-IQA techniques and fifteen proposed feature selection
algorithms followed by conclusion in Section 5.

2 Related work

2.1 Traditional NR-IQA framework

Most of the NR-IQA techniques proposed in literature
follows a two-step approach as shown in Fig. 1. In the first
step features are extracted and in the second step, prediction
of image quality score is performed. Details of some of the
NR-IQA techniques that follow a two-step approach and
extract features in different domains are explained below.

Feature

Extraction

Regression

Model

BIQA

FeaturesImage Predicted

Quality Score

Fig. 1 Traditional two-step approach for NR-IQA

2.1.1 Blind image integrity notator using DCT statistics
(BLIINDS-II)

In [24], DCT based statistical features are extracted by
dividing the image into patches of 17×17. Three directional
regions are considered in each patch and Gaussian fitting
is performed. Four types of features are extracted i.e.,
generalized Gaussian model shape parameters, coefficients
of frequency variation, energy subband ratio measure and
orientation model based features. A total of 24 features are
extracted that are given as an input to the Bayesian inference
model for the prediction of quality score.

2.1.2 Blind/Referenceless image spatial quality evaluator
(BRISQUE)

In [25], feature extraction is performed in the spatial domain
for the purpose of NR-IQA. The features are extracted
over two scales using shape, variance, mean value, left
variance, right variance parameters for horizontal, vertical
and diagonal pairwise products of locally normalized
luminance coefficients. A total of 36 features are extracted
with 18 features on each scale. The quality score is predicted
using the extacted features as input for SVR.

2.1.3 Curvelet quality assessment (CurveletQA)

Curvelet transform is used in [17] to extract three groups of
features. Asymmetric Gaussian distribution is used on the
finest scale to compute four NSS features. One feature is
extracted using mean value of kurtosis and one is extracted
using standard deviation of the non-cardinal orientation
energies. Six features are extracted by taking the difference
between logarithmic magnitude mean values of scalar
energy distribution at adjacent scales. SVM regression is
used to estimate the quality score of image using extracted
features.

2.1.4 Spatial-Spectral entropy based quality (SSEQ)

A technique that extracts features in spatial and spectral
domain for NR-IQA is introduced in [27]. SSEQ extracts
features at three scales. During down sampling, bi-cubic
interpolation is used so that aliasing can be avoided. The
image is divided into patches of 8 × 8 pixels. Spatial
and spectral entropies are computed on each patch and the
features are sorted in ascending order. Top 60% of the
central elements are selected for NR-IQA, which forms a
feature vector of length 12. Quality score is computed using
SVR that utilizes these features as input.
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2.1.5 Gradient magnitude and laplacian of gaussian based
IQA (GM-LOG)

In [26], image structural information is described using
luminance discontinuity that is computed by applying GM
and LOG operator in the spatial domain. Joint adaptive
normalization is used to normalize Gaussian magnitude and
Laplacian of Gaussian marginal distributions for assessing
the quality of images. The technique uses 40 features to
determine the type of distortion affecting the image. SVR
is used to estimate the quality score of image once the type
of distortion is identified. Dependency index in GM-LOG is
used to measure and improve the relationship between GM
and LOG statistics.

2.1.6 Integrated local natural image quality evaluator
(IL-NIQE)

An opinion unaware IQA technique termed as IL-NIQE
is proposed in [34]. Natural image statistics derived
from multiple cues that include normalized luminance
statistics, locally mean subtracted and contrast normalized
coefficients, gradient statistics, statistics based on log-
Gabor filter responses and color statistics are used for
IQA. A multivariate Gaussian model is learned using these
cues for a set of pristine images. Each image is resized to
504× 504 using bi-cubic interpolation. The distorted image
is divided into several patches of size 84×84 and the feature
vector of each patch is mapped to a multivariate gaussian
model. A distance measure resembling bhattacharyya is
used to measure the quality of each image patch by
comparing it to the multivariate Gaussian model of the
pristine images. Average pooling is used to obtain the
overall quality score of the image.

2.1.7 Oriented gradients image quality assessment (OG-IQA)

OG-IQA uses gradient orientation information relative to
the surroundings for IQA [18]. The gradient orientation is
taken with reference to the background of local orientations.
Gaussian partial derivative aligned filters are used in
horizontal and vertical directions to compute directional
gradient components. Change in the statistical distributions

of gradient and relative gradient quantities is used to identify
the distortion type and assess the quality of images. Three
group of features are extracted i.e., gradient magnitude,
relative gradient orientation and relative gradient magnitude
to form a feature vector of length 6. These features are give
as input to the adaptive boosting back propagation neural
network to predict image quality.

2.1.8 Distortion type classification and label transfer (TCLT)

In [19], three set of features are extracted i.e., quality-
aware features for extracted in the DCT, wavelet domain
and multichannel feature fusion for trichromatic property
extracted from Y, Cb and Cr channels. The technique
works under the assumption that similar images have similar
perceptual quality. First the type of distortion affecting the
image is determined and then an image retrieval approach is
used to predict the quality score using a K-nearest neighbor
(KNN) based non parametric model termed as label transfer.
The images KNN’s are searched from a set of distortion
specific annotated images and a weighted average of MOS
values is taken to compute the quality score.

2.2 Feature selection based NR-IQA

All the above mentioned traditional NR-IQA techniques
extract features in different domains and use all features
for the prediction of quality score. The effect of feature
selection algorithm is not explored in these NR-IQA
techniques. Traditional NR-IQA techniques may contain
redundant and irrelevant features in the feature set that
degrade the ability of NR-IQA techniques to predict the
image quality score. Figure 2 shows a three step feature
selection based approach for NR-IQA. The framework
utilizes feature selection algorithms for NR-IQA. Firstly, a
feature vector of length N is extracted using existing NR-
IQA techniques. Feature selection is performed that selects
M number of features i.e., FS , where M ≤ N using feature
selection algorithms. The selected features are used for the
prediction of image quality score using regression.

Impact of feature selection on NR-IQA techniques using
existing feature selection algorithms has been explored
in [33]. Five existing feature selection algorithms namely

Fig. 2 Feature selection based
NR-IQA
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random search, linear forward selection, genetic search,
incremental wrapper feature subset selection with Naive
Bayes classifier and particle swarm optimization are utilized
and their effect on the performance of existing NR-IQA
techniques is studied. It is concluded that genetic search
showed the best performance for NR-IQA.

3 Proposed feature selection algorithms

This work proposes fifteen new feature selection algorithms
specifically designed for NR-IQA based on the mean
values of Spearman rank ordered correlation constant i.e.,
SROCCmean, linear correlation constant i.e., LCCmean,
Kendall correlation constant i.e., KCCmean and root mean
squared error i.e., RMSEmean, computed over all the
features are proposed. If di is the difference between paired
ranks then, SROCC is given as

SROCC = 1 − 6�d2
i

n(n2 − 1)
, (1)

where n is the total number of instances. LCC is computed
as

LCC =

n∑

i=1
(ai − ā)(li − l̄))

√
n∑

i=1
(ai − ā)2

√
n∑

i=1
(li − l̄)2

, (2)

where ai and li are the first and second dataset respectively,
ā and l̄ are mean values of ai and li respectively. KCC is
calculated as

KCC = nc − nd

n(n − 1)/2
, (3)

where nc is the number of concurrent pairs and nd is the
number of opposing pairs. RMSE is computed by

RMSE = 1

n

√
√
√
√

n∑

i=1

(xdmos − xscore)2, (4)

where xdmos is MOS and xscore is the image quality score.
Generally, SROCC, LCC and KCC are used to measure
the coherence between the predicted quality score and
the mean observer score. A value close to 1 suggests a
superior performance. RMSE measures the error between
the predicted value and MOS. A value close to zero for
RMSE shows superior performance. Therefore, we select
those features having SROCC, LCC and KCC score close to
1 and RMSE close to 0.

Algorithm 1 , selects only those features that have

individual SROCC score greater than or equal to

Input

Output Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 while do

3 Add feature to feature set that have

greater than or equal to

4 end

5 return

Algorithm 2 , selects those features have individual

LCC score greater than or equal to

Input

Output Set of M selected features.

1 Compute mean LCC value over all the features,

denoted by

2 while do

3 Add feature to feature set that have

greater than or equal to

4 end

5 return

Algorithm 3 , selects features that have individual

KCC score greater than or equal to

Input

Output Set of M selected features.

1 Compute mean KCC value over all the features,

denoted by

2 while do

3 Add feature to feature set that have

greater than or equal to

4 end

5 return

Algorithm 4 , selects those features, which have indi-

vidual RMSE value less than or equal to

Input

Output: Set of M selected features,

1 Compute mean RMSE value over all the features,

denoted by

2 while do

3 Add feature to feature set that have

less than or equal to

4 end

5 return
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Algorithm 5 , selects features that have individual

SROCC or LCC score greater than or equal to

or score respectively.

Input

Output: Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 Compute mean LCC value over all the features,

denoted by

3 while do

4 Add feature to feature set that have

5 greater than or equal to

6 OR

7 greater than or equal to

8 end

9 Remove redundant features from

10 return

Algorithm 6 , selects features that have individual

SROCC or KCC score greater than or equal to

or score respectively.

Input

Output: Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 Compute mean KCC value over all the features,

denoted by

3 while do

4 Add feature to feature set that have

5 greater than or equal to

6 OR

7 greater than or equal to

8 end

9 Remove redundant features from

10 return

Algorithm 7 , selects features that have individual

LCC or KCC score greater than or equal to

or score respectively.

Input

Output: Set of M selected features.

1 Compute mean LCC value over all the features,

denoted by

2 Compute mean KCC value over all the features,

denoted by

3 while do

4 Add feature to feature set that have

5 greater than or equal to

6 OR

7 greater than or equal to

8 end

9 Remove redundant features from

10 return

Algorithm 8 , selects features that have individual

SROCC score greater than or equal to

or individual RMSE score less than or equal to

score.

Input

Output: Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 Compute mean RMSE value over all the features,

denoted by

3 while do

4 Add feature to feature set that have

5 greater than or equal to

6 OR

7 less than or equal to

8 end

9 Remove redundant features from

10 return

Algorithm 9 , selects features that have individual

LCC score greater than or equal to or indi-

vidual RMSE score less than or equal to

score.

Input

Output: Set of M selected features.

1 Compute mean LCC value over all the features,

denoted by

2 Compute mean RMSE value over all the features,

denoted by

3 while do

4 Add feature to feature set that have

5 greater than or equal to

6 OR

7 less than or equal to

8 end

9 Remove redundant features from

10 return

Algorithm 10 , selects features that have individual

KCC score greater than or equal to or

individual RMSE less than or equal to

score.

Input

Output: Set of M selected features.

1 Compute mean KCC value over all the features,

denoted by

2 Compute mean RMSE value over all the features,

denoted by

3 while do

4 Add feature to feature set that have

5 greater than or equal to

6 OR

7 less than or equal to

8 end

9 Remove redundant features from

10 return
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Algorithm 11 , selects features that have individ-

ual SROCC or LCC score greater than or equal to

or score respectively or indi-

vidual RMSE score less than or equal to .

Input

Output: Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 Compute mean LCC value over all the features,

denoted by

3 Compute mean RMSE value over all the features,

denoted by

4 while do

5 Add feature to feature set that have

6 greater than or equal to

7 OR

8 greater than or equal to

9 OR

10 less than or equal to

11 end

12 Remove redundant features from

13 return

Algorithm 12 , selects features that have individ-

ual SROCC or KCC score greater than or equal to

or score respectively or indi-

vidual RMSE score less than or equal to

Input

Output: Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 Compute mean KCC value over all the features,

denoted by

3 Compute mean RMSE value over all the features,

denoted by

4 while do

5 Add feature to feature set that have

6 greater than or equal to

7 OR

8 greater than or equal to

9 OR

10 less than or equal to

11 end

12 Remove redundant features from

13 return

Algorithm 13 , selects features that have indi-

vidual LCC or KCC score greater than or equal to

or score respectively or indi-

vidual RMSE less than or equal to .

Input

Output: Set of M selected features.

1 Compute mean LCC value over all the features,

denoted by

2 Compute mean KCC value over all the features,

denoted by

3 Compute mean RMSE value over all the features,

denoted by

4 while do

5 Add feature to feature set that have

6 greater than or equal to

7 OR

8 greater than or equal to

9 OR

10 less than or equal to

11 end

12 Remove redundant features from

13 return

Algorithm 14 , outlines features selection by select-

ing those features that have individual SROCC or LCC

or KCC score greater than or equal to or

or score respectively.

Input

Output: Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 Compute mean LCC value over all the features,

denoted by

3 Compute mean KCC value over all the features,

denoted by

4 while do

5 Add feature to feature set that have

6 greater than or equal to

7 OR

8 greater than or equal to

9 OR

10 greater than or equal to

11 end

12 Remove redundant features from

13 return
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Algorithm 15 , outlines features selection by

selecting those features that have individual SROCC

or LCC or KCC score greater than or equal to

or or score respec-

tively and RMSE less than or equal to .

Input

Output: Set of M selected features.

1 Compute mean SROCC value over all the features,

denoted by

2 Compute mean LCC value over all the features,

denoted by

3 Compute mean KCC value over all the features,

denoted by

4 Compute mean RMSE value over all the features,

denoted by

5 while do

6 Add feature to feature set that have

7 greater than or equal to

8 OR

9 greater than or equal to

10 OR

11 greater than or equal to

12 OR

13 less than or equal to

14 end

15 Remove redundant features from

16 return

To perform feature selection SROCCi , LCCi , KCCi

and RMSEi for each individual feature Fi and NR-IQA
technique is computed. The quality score for each individual
feature is computed using SVR. The SVR model is trained
by using 80% images and 20% images are used for testing.
Mean scores of SROCCmean, LCCmean, KCCmean and
RMSEmean over 1000 runs are considered for selecting
features FS , where FS ≤ FAll . Details of the proposed
feature selection algorithms are given in Algorithm 1 to
Algorithm 15.

After features are selected using newly proposed feature
selection algorithms, the quality score of the image
is predicted using support vector regression. SVR is
implemented using LibSVM package [35]. SVR is given in
[36] as

ξ(y) = ϑβ(y) + c1, (5)

where y is the input features extracted using NR-IQA, β

is the feature space, c1 is a constant and ϑ represents the
ith instance weight. SVR aims to approximate a support
vector machine function so that the error between ξ(y) and
the target value is minimized. All computations in SVM

are performed using kernel function k(m). The advantage
of using kernel function is that the inner product can be
taken without constructing the vector space by using kernel
function. The radial function of order P is represented
in [36] as

k(x) = �K
i=1αi

1

(2π)
P
2 σP

i

exp(−||x − ci ||
2σ 2

i

) + b2, (6)

4 Experimental results

4.1 IQA databases and evaluation parameters

There are various available subjective image quality
assessment databases. To evaluate the performance of
proposed feature selection algorithms three commonly used
IQA databases are used i.e., LIVE [38], TID2008 [39] and
CSIQ [40]. The LIVE database has 29 reference images.
Five types of distortions are considered, namely, fast fading
(FF), Gaussian blur (GB), JPEG2000 (JP2K), JPEG and
white noise (WN). There are total 779 images with varying
degree of distortions in the LIVE database. A total of
25 reference images are present in TID2008 database. 17
type of distortions are considered in the TID2008 database.
Four different levels of individual distortions are used to
degrade each reference image. CSIQ database consists of 30
reference images. Images affected by five types of distortion
i.e., JPEG, JP2K, contrast, WN and GB are considered in
CSIQ database. The quality assessment of images in CSIQ
database is performed by 35 observers.

To establish database independence, feature selection is
performed by taking into account all the extracted image
features in LIVE database for each NR-IQA technique.
The selected features from LIVE database are used for
the prediction of quality score in CSIQ and TID2008
databases for a particular NR-IQA technique. In this work,
four common type of distortions from TID2008 and CSIQ
database are used i.e., GB, JP2K, JPEG, WN. To train SVR,
the dataset is divided into non-overlapping training and
testing sets consisting of 80% and 20% data respectively.
To negate the effect of any bias 1000 iterations are used
to randomly select non-overlapping training and testing
sets. Grid test is applied on each NR-IQA technique to
select SVR parameters. SVR is implemented using LibSVM

where ci is the ith Gaussian basis function center, σi is the
standard deviation, αi is the weight associated with the ith

Gaussian basis function and b2 is a constant that represents
the bias value.
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package [35]. SROCC, LCC, KCC and RMSE are used for
the performance comparison of NR-IQA techniques.

4.2 Performance comparison

NSS based NR-IQA techniques perform under the assump-
tion that certain properties are possessed by natural images,
which are represented by NSS features. These NSS proper-

ties change in the presence of distortion. Divergence of these
NSS properties from natural image are used for estima-
tion of image quality score. As feature selection algorithm
selects a subset of features, therefore, effect of selected fea-
tures on existing NR-IQA techniques should be addressed.
A normalized histogram of features selected for each NR-
IQA technique is shown in Fig. 3. It can be observed that
the properties of distorted and undistorted images are differ-

Fig. 3 Effect of proposed feature selection algorithms on normalized feature histogram for different NR-IQA techniques a BLIINDS-II [37], b
BRISQUE [25], c CurveletQA [17], d SSEQ [27], e GM-LOG [26], f IL-NIQE [34], g OG-IQA [18], h TCLT [19]
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ent and this difference is increased when feature selection
algorithms are used. Feature selection algorithms select fea-
tures for NR-IQA that are most affected when distortion
is present in the image. Figure 3 validates that the devia-
tion in NSS properties between natural and distorted images
are effectively represented when proposed feature selection
algorithms are used.

The SROCC score for each distortion type over
three commonly used IQA databases, fifteen proposed
feature selection algorithms and eight NR-IQA techniques
i.e., BLINDS II [37], BRISQUE [25], curveletQA [17],
SSEQ [27], GM-LOG [26], IL-NIQE [34], OG-IQA [18],
TCLT [19] is presented in Table 1. The performance of
NR-IQA techniques is improved for majority of distortions
when proposed feature selection algorithms are used. Hit
count in Table 1 indicates the number of times each
algorithm shows better or equal performance in comparison
with using all the features. The bold face values in
Table 1 also represent the performance of feature selection
algorithms that outperform NR-IQA techniques using all
the features. The highest hit count of 82 is achieved for
SLKR and SLK feature selection algorithms. The lowest
hit count of 62 is achieved for R feature selection algorithm,
which is still much higher than the hit count of 11 when
using all the features and hit count of 30 for existing genetic
search feature selection algorithm. It is evident from Table 1
that single correlation based feature selection algorithms
are better than error based feature selection algorithm.
Feature selection algorithms based on two correlations
parameters are better than single correlation parameter
based algorithms. The feature selection algorithms based on
two correlations parameters with error are better than the
algorithms based only on two correlations parameters. It is
also observed that algorithms based on three correlations
parameters show better results than the algorithms based
only on two correlations parameters. Furthermore, two
algorithms i.e., algorithm based on three correlations
parameters (SLK) and algorithm based on three correlation
parameters and error parameter (SLKR) show the best
results.

Table 2 shows an overall performance comparison
of the proposed feature selection algorithms for NR-
IQA techniques. Bold face values in Table 2 represents
better performance of feature selection algorithms when
compared with all features and existing feature selection
algorithm. For the overall performance it can be observed
that algorithms based on three correlations parameters
and error parameter i.e., SLKR perform at par with
algorithms based on three correlations parameters i.e.,
SLK . Algorithms based on two correlations parameters
and error parameter perform better than algorithms based
only on two correlations parameters i.e., SKR performs
better than SK , LKR performs better than LK and SLR
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Table 2 Proposed feature selection algorithms performance comparison averaged over all distortion types for each NR-IQA technque

NR-IQA technique Feature selection algorithm SROCC LCC KCC RMSE

BLIINDS II [37] All features 0.8948 0.9146 0.7413 2.7249

GS [33] 0.8923 0.9103 0.7357 2.7891

S 0.8935 0.9134 0.7379 2.7379

L 0.8930 0.9104 0.7368 2.7653

K 0.8923 0.9103 0.7357 2.7891

R 0.8891 0.9101 0.7352 2.7946

SL 0.8973 0.9176 0.7419 2.7154

SK 0.8971 0.9150 0.7414 2.7232

LK 0.8943 0.9142 0.7390 2.7250

SR 0.8971 0.9150 0.7414 2.7232

LR 0.8930 0.9104 0.7368 2.7653

KR 0.8943 0.9142 0.7390 2.7250

SLR 0.8973 0.9176 0.7419 2.7154

SKR 0.8971 0.9150 0.7414 2.7232

LKR 0.8948 0.9146 0.7413 2.7249

SLK 0.8973 0.9176 0.7419 2.7154

SLKR 0.8973 0.9176 0.7419 2.7154

BRISQUE [41] All features 0.8899 0.8962 0.7299 5.1886

GS [33] 0.8880 0.8950 0.7263 5.1982
S 0.9169 0.9255 0.7497 4.2513
L 0.9022 0.9084 0.7336 5.0845
K 0.9170 0.9258 0.7499 4.0403
R 0.9127 0.9206 0.7481 4.4155
SL 0.9120 0.9177 0.7453 4.8495
SK 0.9205 0.9285 0.7500 3.7960
LK 0.9107 0.9134 0.7394 4.9204
SR 0.9205 0.9285 0.7500 3.7960
LR 0.9059 0.9122 0.7358 5.0812
KR 0.9164 0.9245 0.7490 4.4118
SLR 0.9120 0.9177 0.7453 4.8495
SKR 0.9205 0.9285 0.7500 3.7960
LKR 0.9107 0.9134 0.7394 4.9204
SLK 0.9084 0.9126 0.7379 5.0758
SLKR 0.9084 0.9126 0.7379 5.0758

CurveletQA [17] All features 0.9095 0.9044 0.7610 3.8603
GS [33] 0.8802 0.8787 0.7258 4.3299
S 0.9163 0.9196 0.7644 3.8504
L 0.9034 0.9042 0.7527 3.8940
K 0.9021 0.9034 0.7512 3.8967
R 0.8993 0.8794 0.7462 4.1212
SL 0.9187 0.9210 0.7822 3.8388
SK 0.8992 0.8793 0.7260 4.1295
LK 0.8802 0.8787 0.7258 4.3299
SR 0.9012 0.9026 0.7472 4.1144
LR 0.8798 0.8779 0.7256 4.3420
KR 0.8802 0.8787 0.7258 4.3299
SLR 0.9187 0.9210 0.7822 3.8388
SKR 0.9010 0.9001 0.7463 4.1202
LKR 0.8802 0.8787 0.7258 4.3299
SLK 0.9185 0.9207 0.7666 3.8418
SLKR 0.9185 0.9207 0.7666 3.8418



3496 I. F. Nizami et al.

Table 2 (continued)

NR-IQA technique Feature selection algorithm SROCC LCC KCC RMSE

SSEQ [27] All features 0.8844 0.9070 0.7039 3.3012
GS [33] 0.8886 0.9084 0.7119 3.2899
S 0.8909 0.9087 0.7257 3.2449
L 0.8900 0.9086 0.7241 3.2496
K 0.8909 0.9087 0.7257 3.2449
R 0.8886 0.9084 0.7119 3.2899
SL 0.8964 0.9162 0.7310 2.8269
SK 0.8909 0.9087 0.7257 3.2449
LK 0.8910 0.9089 0.7273 3.2095
SR 0.8900 0.9086 0.7241 3.2496
LR 0.8900 0.9086 0.7241 3.2496
KR 0.8935 0.9107 0.7297 3.1994
SLR 0.8964 0.9162 0.7310 2.8269
SKR 0.8909 0.9087 0.7257 3.2449
LKR 0.8910 0.9089 0.7273 3.2095
SLK 0.8910 0.9089 0.7273 3.2095
SLKR 0.8910 0.9089 0.7273 3.2095

GM-LOG [26] All features 0.9390 0.9488 0.7562 3.3565
GS [33] 0.9508 0.9633 0.7662 2.6485
S 0.9538 0.9662 0.7892 2.6219
L 0.9558 0.9664 0.7914 2.6070
K 0.9536 0.9647 0.7875 2.6231
R 0.9518 0.9634 0.7856 2.6376
SL 0.9558 0.9664 0.7914 2.6070
SK 0.9508 0.9633 0.7662 2.6485
LK 0.9528 0.9646 0.7870 2.6232
SR 0.9496 0.9628 0.7635 3.3369
LR 0.9528 0.9646 0.7870 2.6232
KR 0.9496 0.9628 0.7635 3.3369
SLR 0.9558 0.9664 0.7914 2.6070
SKR 0.9518 0.9634 0.7856 2.6376
LKR 0.9528 0.9646 0.7870 2.6232
SLK 0.9558 0.9664 0.7914 2.6070
SLKR 0.9558 0.9664 0.7914 2.6070

IL-NIQE [34] All features 0.8894 0.8943 0.7167 4.4310
GS [33] 0.8860 0.8900 0.7137 4.6329
S 0.8916 0.8961 0.7198 4.2621
L 0.8887 0.8936 0.7158 4.4237
K 0.8886 0.8934 0.7158 4.4232
R 0.8865 0.8917 0.7152 4.5227
SL 0.8900 0.8946 0.7172 4.4263
SK 0.8909 0.8956 0.7186 4.3426
LK 0.8903 0.8953 0.7182 4.4210
SR 0.8947 0.8992 0.7248 4.0123
LR 0.8860 0.8900 0.7137 4.6329
KR 0.8958 0.9002 0.7362 3.8422
SLR 0.8947 0.8992 0.7248 4.0123
SKR 0.8961 0.9016 0.7388 3.7523
LKR 0.8944 0.8980 0.7212 4.1537
SLK 0.8976 0.9032 0.7432 3.6921
SLKR 0.8976 0.9032 0.7432 3.6921

OG-IQA [18] All features 0.9080 0.9198 0.7376 3.7080
GS [33] 0.9084 0.9204 0.7388 3.7040
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Table 2 (continued)

NR-IQA technique Feature selection algorithm SROCC LCC KCC RMSE

S 0.9084 0.9204 0.7388 3.7040
L 0.8971 0.9113 0.7310 4.4015
K 0.9084 0.9204 0.7388 3.7040
R 0.8728 0.8866 0.7309 4.4157
SL 0.9058 0.9174 0.7327 3.7648
SK 0.9068 0.9182 0.7338 3.7413
LK 0.9058 0.9174 0.7327 3.7648
SR 0.9068 0.9182 0.7338 3.7413
LR 0.9003 0.9130 0.7322 3.8785
KR 0.9068 0.9182 0.7338 3.7413
SLR 0.9073 0.9188 0.7351 3.7271
SKR 0.9084 0.9204 0.7388 3.7040
LKR 0.9073 0.9188 0.7351 3.7271
SLK 0.9084 0.9204 0.7388 3.7040
SLKR 0.9084 0.9204 0.7388 3.7040

TCLT [19] All features 0.9105 0.9155 0.7397 4.8233
GS [33] 0.9113 0.9163 0.7401 3.4120
S 0.9152 0.9200 0.7533 3.3698
L 0.9105 0.9155 0.7397 4.8233
K 0.9113 0.9163 0.7401 3.4120
R 0.9093 0.9143 0.7342 4.9432
SL 0.9140 0.9188 0.7498 3.3743
SK 0.9121 0.9166 0.7452 3.3792
LK 0.9121 0.9166 0.7452 3.3792
SR 0.9199 0.9249 0.7606 3.3323
LR 0.9192 0.9240 0.7588 3.3587
KR 0.9199 0.9249 0.7606 3.3323
SLR 0.9193 0.9243 0.7592 3.3532
SKR 0.9201 0.9251 0.7610 3.3296
LKR 0.9169 0.9216 0.7563 3.3652
SLK 0.9224 0.9274 0.7624 3.3252
SLKR 0.9224 0.9274 0.7624 3.3252

performs better than SL. Algorithms based on single
correlation parameter and error parameter perform better
than algorithms based on single correlation parameter i.e.,
SR and S perform at par with each other, L and LR

perform at par with each other, K and KR perform
at par with each other i.e., S, SR, K , KR and GS

improve the performance of four NR-IQA techniques and
also degrade the performance of four NR-IQA techniques,

Table 3 Comparison of features selection algorithms on NR-IQA in terms of improvement of performance

NR-IQA technique GS [33] S L K R SL SK LK SR LR KR SLR SKR LKR SLK SLKR

BLIINDS-II [24] 5 5 5 5 5 � � 5 � 5 5 � � 5 � �
BRISQUE [25] 5 � � � � � � � � � � � � � � �
CurveletQA [17] 5 � 5 5 5 � 5 5 5 5 5 � 5 5 � �
SSEQ [27] � � � � � � � � � � � � � � � �
GM-LOG [26] � � � � � � � � � � � � � � � �
IL-NIQE [34] 5 � 5 5 5 � � � � 5 � � � � � �
OG-IQA [18] � � 5 � 5 5 5 5 5 5 5 5 � 5 � �
TCLT [19] � � 5 � 5 � � � � � � � � � � �
Count 4 7 3 5 3 7 6 5 6 4 5 7 7 5 8 8
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Fig. 4 Percentage of features selected by the proposed feature selection algorithms for different NR-IQA techniques a BLIINDS-II [37], b
BRISQUE [41], c CurveletQA [17], d SSEQ [27], e GM-LOG [26], f IL-NIQE [34], g OG-IQA [18], h TCLT [19]

whereas L and LR improve the performance of three
NR-IQA techniques and also degrade the performance of
three NR-IQA techniques. Feature selection algorithms
such as GS, R and K has reduced the most number of

features in majority of NR-IQA techniques and does not
show good performance because these algorithms discard
relevant features. Therefore, in case of these algorithms
all features show better results. On the other hand, feature
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selection algorithms such as SLK and SLKR show better
performance for all NR-IQA when compared with all
features because these algorithms select the most relevant
features for NR-IQA.

Table 3 shows the comparison of feature selection
algorithms in terms of overall performance improvement.
A (�) indicated that the performance of a particular NR-
IQA improves and a (5) represents that the performance of
particular NR-IQA does not improve after feature selection.
It can be seen that SLKR and SLK improve the performance
in all eight NR-IQA techniques, S, SL, SLR and SKR help
to enhance the performance of seven IQA techniques, SK
and SR upgrade the performance of six IQA techniques, K,
LK, KR and LKR improve the performance of five IQA
techniques, LR and GS [33] enhance the performance of
four IQA techniques, L and R upgrade the performance of
only three IQA techniques. It can be concluded from Table 3
that all feature selection algorithms with S parameter and
its various combinations L, K and R perform superior to all
other feature selection algorithms. Since SLK and SLKR
improve the performance of all eight NR-IQA techniques
therefore, these two proposed feature selection algorithms
are NR-IQA independent.

The number of features used by different feature
selection algorithms as compared to using all the features
for each distortion type are shown in Fig. 4. It is evident that
the proposed feature selection algorithms reduce the number
of features for all NR-IQA techniques. Although GS [33]
reduces the most amount of features for all the feature
selection algorithms but the hit count of GS is only 29 as
observed from Table 1 i.e., lowest among all the feature
selection algorithms. Among the proposed algorithms R

reduces the largest number of features for BLIINDS-II [37],
CurveletQA [17], SSEQ [27], GM-LOG [26], IL-NIQE [34]
and TCLT [19]. R and K perform the largest reduction in
features for BRISQUE [41] whereas, GS, [33] S, L, K ,
SL, SK , LK and SLK reduce the most features for OG-
IQA [18]. To implement NR-IQA in real-world scenarios
the system can be connected to large database using a cloud
infrastructure and the challenge of resource allocation to
the users may be addressed using techniques such as [42].
Copy attacks such as change in orientation of an image,
flipping, rescaling, change in illumination, contrast change
and gaussian noise can affect the quality of an image [43]
and a copy attack can be detected using features selected for
BIQA techniques.

5 Conclusion

No-reference image quality assessment has gained impor-
tance due to wide-ranging use of multimedia content in
daily life. The performance of NR-IQA techniques depends

on extracted features to assess image quality, which can
be degraded in the presence of redundant and irrelevant
features. This paper proposes fifteen new feature selec-
tion algorithms based on SROCC, LCC, KCC and RMSE
for NR-IQA techniques. The performance is evaluated on
three IQA databases and eight NR-IQA techniques that
extract features in different domains. The experimental
results reveal that the performance of NR-IQA techniques
using feature selection algorithms shows high correlation
with mean observer score. The best overall performance is
achieved by two algorithms i.e., algorithm based on three
correlations parameters (SLK) and the algorithm based
on three correlations and error parameters (SLKR). The
experimental results also show that the proposed feature
selection algorithms are database independent, since the
features selected on LIVE database improve the perfor-
mance of NR-IQA techniques over TID2008 and CSIQ
IQA databases. The proposed SLK and SLKR feature selec-
tion algorithms are also NR-IQA technique independent
since these algorithms improve the performance of all eight
NR-IQA techniques.
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