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Impact of nonlinear radiative nanoparticles on an unsteady flow of a Williamson fluid 

towards a permeable convectively-heated shrinking sheet

Abstract

Purpose- The impact of nanoparticles on an unsteady flow of a Williamson fluid past a 

permeable convectively heated shrinking sheet is examined numerically. 

Design/methodology/approach – In sort of the solution of the governing differential equations, 

suitable transformation variables are used to get the system of ODEs. The converted equations 

are then numerically solved via the shooting technique.

Findings – The impacts of such parameters on the velocity profile, temperature distribution and 

the concentration of nanoparticles are examined through graphs and tables. The results point out 

that multiple solutions are achieved for certain values of the suction parameter and for 

decelerating flow , while for accelerating flow 
 
the solution is unique. Further,  0A   0A 

the non-Newtonian parameter reduces the fluid velocity and boosts the temperature distribution 

and concentration of nanoparticles in the first solution, whilst the reverse drift is noticed in the 

second solution.

Originality/value – We think that the current results are new and significant which are utilized 

in many applications such as biomedicine, industrial, electronics and solar energy. The results 

have not been considered elsewhere.

Keywords: Unsteady flow; nanofluid; Williamson fluid; nonlinear radiation; convective 

boundary condition.

1. Introduction

There are several fluids of engineering and industrial significance such as multigrade oils, 

blood polymers, petroleum production, composite material, fruit juices and shampoos that 
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display the viscoelastic behavior. These fluids cannot be described by a simple model of 

Newtonian fluids. Due to diversity of flow in nature, different non-Newtonian models have been 

recommended by researchers. Amongst several models, there is one important non-Newtonian 

model which is the Williamson fluid model. The Williamson fluid model has a definite 

advantage over other non-Newtonian fluid models in the sense that it contains both minimum 

viscosity and maximum viscosity which gives better results for pseudoplastic fluids (apparent 

viscosity at infinity does not tend to zero). Williamson (1927) proposed this model which 

describe the equations of viscous flow of the pseudo-plastic fluids and verified the results 

experimentally. Nadeem et al. (2013) developed the two-dimensional flow equations of 

Williamson fluid towards a stretched surface and obtained the series solution using homotopy 

analysis method. Khan and Khan (2014) obtained the series solution of four types of steady flow 

of Williamson liquid. The two-dimensional steady flow of a Williamson fluid past a stretched 

sheet filled with nanoparticles was inspected by Nadeem and Hussain (2014). Malik and 

Salahuddin (2015) obtained the numerical result of MHD viscous flow of a Williamson fluid by 

stagnation point towards a stretched cylinder. Krishnamurthy et al. (2016) scrutinized flow with 

MHD heat transfer of a Williamson liquid past a stretched sheet immersed in nanofluid with 

chemical reaction. The importance of the chemical reaction on three dimensional flow of a non-

Newtonian Prandtl fluid over a Riga convectively-heated surface was discussed by Kumar et al. 

(2017a). Recently, Kumar et al. (2017b) considered the effect of nonlinear thermal radiation on 

non-Newtonian Williamson fluid comprising dusty particles suspended on stretched surface. 

Very recently, Kumar et al. (2018) scrutinized the influences of magnetic and thermal radiation 

effects on flow of hyperbolic tangent dusty fluid past a stretched surface.  
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Nowadays, the investigation of nanofluids has received admirable interest due to its 

various practical applications. Nanofluids are homogenous combination of nanoparticles and 

base or regular fluids similar to water, bio fluids, oil, ethylene glycol and other common liquids. 

Since the regular fluids have lower thermal conductivity which insufficient to assemble the 

necessity of today’s rate of cooling. A dependable method to improve the thermal conductivity is 

to add in nanoparticles in regular fluid. Masuda et al. (1993) scattered the nanoparticles in fluid 

to enhance the thermal conductivity. Buongiorno (2006) observed that the thermophoresis 

diffusion and Brownian motion of nanoparticles give the immense enhancement in fluids thermal 

conductivity. Due to these effects, he suggested the modifications in the convective situations. 

Nield and Kuznetsov (2009, 2010) initially considered the flow along a vertical sheet with 

nanofluid. Later on, Khan and Pop (2010) expanded Nield and Kuznetsov work by considering a 

constant surface temperature comprising nanofluid over a stretched surface. The characteristics 

of heat transfer comprising nanoparticles towards a convectively-heated stretched sheet were 

examined by Makinde and Aziz (2011). They monitored that the characteristics of thermal can 

be considerably changed through mounting the effects of thermophoresis as well as Brownian 

motion. Rana and Bhargava (2012) inspected the steady flow holding nanoparticles past a non-

linear stretched surface and obtained results numerically. Rashidi et al. (2013) considered 

electrically conducting flow containing nanoparticles using the second law of thermodynamics 

over a permeable rotating disk. The impact of heat generation on free convection flow containing 

nanofluid over a vertical surface immersed in non-Darcy medium was investigated by Chamkha 

et al. (2014). Beg et al. (2014) obtained the numerical results of single-phase and two-phase 

models in a circular tube filled with Al2O3-water based nanofluid. Garoosi et al. (2015) 

investigated free and mixed convective flow of a three types of nanofluid namely Cu, Al2O3 and 
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TiO2  in a cavity. Abolbashari et al. (2015) explored the outcome of partial slip on flow of a non-

Newtonian Casson nanofluid towards a convectively-heated stretched sheet with entropy 

generation and acquired the result via optimal homotopy technique. Free convective flow and 

heat exchangers in a cavity of nanofluid via Buongiorno model containing various heaters and 

coolers was scrutinized by Garoosi et al. (2015). Freidoonimehr et al. (2015) calculated MHD 

unsteady free convective flow of four different water-based nanofluids towards a porous vertical 

stretched sheet and obtained the numerical solution via the shooting method with RK technique. 

Rahman et al. (2016) investigated Brownian motion and thermophoresis diffusion using the 

second law of thermodynamics of a non-Newtonian Jeffrey nanofluid over a stretched sheet with 

zero flux. The characteristics of three dimensional MHD flow of a non-Newtonian Carreau fluid 

past a stretched surface containing nanoparticles in the presence of thermal radiation was 

explored by Rudraswamy et al. (2017). Krishnamurthy et al. (2018) discussed the impact of 

Al2O3-water nanoparticle on flow with heat transfer past a stretched surface embedded in a 

porous medium with thermal radiation holding dust particles. Recently, Hayat et al. (2018a) 

explored the influence of entropy generation on mixed convective flow of water-based silver and 

copper nanoparticles via a rotating disk in the presence of viscous dissipation, thermal radiation 

and Joule heating. 

The study of boundary layer flow with non-linear radiation and convective condition is 

considered in several engineering and industrial processes involving die forging, thermal energy 

storage, chemical reactions, gas and nuclear turbines. Aziz (2009) inspected the flow towards a 

heated flat surface. Makinde and Aziz (2010) scrutinized mixed convective flow and MHD heat 

transfer past a vertical heated plate immersed in porous medium. Yao et al. (2011) obtained an 

exact result for viscous flow towards a porous convectively-heated stretched/shrinking wall. The 
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viscous flow with heat transfer towards a porous stretched surface through convective conditions 

was investigated numerically by Ishak (2014). The effect of nonlinear radiation on stagnation 

point flow of nanofluid towards a stretched sheet through convective condition was studied 

numerically by Mushtaq et al. (2014). Rahman et al. (2015) studied mixed convection flow over 

a vertical heated flat surface. Mustafa et al. (2015) investigated the steady flow a Maxwell fluid 

over a heated exponentially stretched sheet immersed in a nanofluid.  Ibrahim and Haq (2016) 

studied the MHD flow holding nanoparticles near a stagnation-point over a heated stretched 

sheet. Makinde et al. (2016) scrutinized MHD stagnation-point flow past a connective heated 

stretched sheet by slip and radiation effects comprising nanofluid. Khan et al. (2016) deliberated 

the effect of nonlinear radiation on MHD flow of a Carreau fluid past a nonlinear stretched sheet 

with convective boundary condition. The thermal conductivity dependence on temperature near a 

stagnation-point towards a non-linear stretching sheet in the presence of variable thickness with 

Cattaneo-Christov heat flux was scrutinized by Hayat et al. (2016a). In another paper, Hayat et 

al. (2016b) discussed the influences of homogenous-heterogeneous reactions on stagnation-point 

flow of a Maxwell fluid past a stretched cylinder with Cattaneo-Christov heat flux. Mabood and 

Khan (2016) obtained the analytic solution of MHD unsteady flow over a convectively-heated 

stretched sheet holding nanoparticles. The influence of radiative flow on Oldroyd-B two-phase 

flow over a cone/wedge with Cattaneo–Christov heat flux was discussed by Reddy et al. (2018). 

Hayat et al. (2018b) discussed combined effects of Joule heating and viscous dissipation on 

radiative flow via a rotating disk in the presence of magnetic field. 

The objective of the current research is to study the nonlinear radiative heat transfer on 

flow by dispersing nanoparticles into non-Newtonian Williamson fluid past a heated unsteady 

shrinking sheet. The transformed nonlinear differential equations are numerically solved via 
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shooting technique. Multiple solutions are obtained for accelerating flow and definite values of 

suction parameter. To the author's best of knowledge no one yet considered this type of problem. 

We expected that the present outcomes will give significant information for researchers. It is 

renowned that several devices meet flat or unexpected alteration in the environment of 

aerodynamic. The rotor of helicopter, the propeller of ship etc., normally operate in an unsteady 

environment. 

2. Mathematical Formulation

Consider an unsteady nonlinear radiative flow of a non-Newtonian Williamson fluid 

towards a porous convectively-heated shrinking surface filled with nanoparticles. It is presumed 

that , axes measured along the shrinking surface and normal to it, respectively. It is also x && y &&

supposed that the velocity of surface is  with and  are constants  ( , ) / 1wu x t ax ct  && &&&& && &&  0a  c

with dimensions T1 (see Fig. 1). Further, it is assumed that at lower surface, the sheet was 

heated convectively with temperature  that offers a coefficient of heat transfer . For fT&& fh

Williamson fluid, the stress-tensor is specified as (Nadeem et al., 2013).

, (1)S pI   && &&&&

and

, (2)0
11

A  





     

&& && &&&& && &&&

where   and  extra stress tensor, limiting viscosities at zero and infinite shear stress, ,&& 0&& &&

respectively,  time constant,  the first Rivilin-Erickson tensor and  is described as0 &&
1A &

,   . (3)1
2

 &  2
1trace A  &&

Now, we only consider the case in which
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,  0 && 1. &&&

Thus, we get

(4)0
11

A



 
&& &&
&&&

or using binomial expansion

(5) 0 11 A     &&&&&&&

Under these assumptions, the physical equations that govern the unsteady flow are written as 

(Kumar et al. 2017b; Srinivas et al. 2017):

, (6)0u v
x y

 
 

 
&& &&
&& &&

, (7)
2 2

2 2
2u u u u u uu v

t x y y y y
      

    
     
&& && && && && &&&&&& &&
&& && && && && &&

, (8)
22

2

1
( )

T r
B

p f

D qT T T T C T Tu v D
t x y y y y T y c y

 


          
                   

&& && && && && &&
&&&& && && &&&& && && && && && && &&

, (9)
2 2

2 2
T

B

DC C C C Tu v D
t x y y T y

      
            

&& && && && &&
&& && &&&& && && && &&

The boundary conditions are

(10) 
0 : 0,  0,  ,    for all , ,

0 : ( , ),  ( ),  ( ) ,  at  0,

          0,  ,   as .

w w f f w

t u v T T C C x y
Tt u u x t v v t k h t T T C C y
y

u T T C C y

 

 

    


        



    

&& &&&& &&&& && && &&&&
&&

&& &&&& &&&& && && &&&& && && && && &&
&&

&& &&&& &&&& &&

where  velocity components in  and axes respectively,  the thermal diffusivity,  ,u v&&&& x && y && && 

the kinematic viscosity,  the density,  the temperature,  the free stream temperature,   T&& T
&& C&&

the concentration of nanoparticles,  and  the coefficients of Brownian and thermophoresis BD TD
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8

diffusion respectively,  the ratio b/w the heat capacity and specific heat capacitance of &&

nanoparticle material and fluid,  the specific heat capacitance of nanofluid.( )p fc

Following Khan et al. (2016), the heat flux of radiative  is communicated asrq

(11)
* 4 *

3
* *

4 16 ,
3 3r

T Tq T
y yk k

  
   

 

&& &&&& && &&&& && &&&& &&

where  the constant of Stefan–Boltzmann and  the coefficient of mean absorption. Using *&& *k&&

Eq. (11), Energy eq. (8) can be written as

. (12)
2* 3

*

16
3( )

T
B

p f

DT T T T T C T Tu v D
t x y y y y y T yc k

 
 

             
                            

&&&& && && && && && &&&&
&&&& && &&&& &&&& && && && && && && &&

Now, we introduce the similarity transformation (Naganthran et al., 2016):

(13)
   

,  ( ), ( ) ,  ( ) .
1 1 f w

T T C Ca ay xf
ct ct T T C C

      


 

 

 
   

   

&& &&&& &&
&& && && &&&& &&&& &&

Here  the similarity variable and the stream function, respectively. We get ,   

 
with , where 

 
being the temperature ratio parameter.  1 1wT T      && && 1w  /w fT T  && &&

Here for similarity solution, we assumed that 
 
(see Naganthran et al., 2016),  3/ 2

1 1 /ct x   && && && &&

 the variable velocity of suction with  a positive constant and 0( ) 1wv t v ct && &&&& 0v

 with  (see Mahapatra and Nandy, 2013).( ) / 1fh t d ct && && 0d 

In view of relation (13), equation (7)-(12) are transmuted into ODEs

, (14)2 1''' '' ' '' ''' ' '' 0
2

f ff f f f A f f        
 

, (15)    3 24 1'' Pr ' 1 1 ' Pr ' ' ' Pr ' 0
3 2w

d

df Nb Nt A
R d

        


            
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9

, (16)1'' ' '' Pr ' 0
2

NtScf ScA
Nb

      

subject to the boundary conditions

(17)
 (0) , '(0) 1, '(0) 1 (0) , (0) 1,

'( ) 0, ( ) 0,  ( ) 0.
f S f

f
   

 
      

     

where prime signify differentiation w.r.t ,   the non-Newtonian Williamson  3/ 2
12 /a  

parameter,  an unsteady parameter,  the Prandtl number,  /A c a Pr /  && &&   /B wNb D C C  && && &&&&

the Brownian motion parameter,  the thermophoresis parameter,   /T fNt D T T T   && && &&&&&&

 the convective parameter,  the thermal radiation parameter, / /d a k  && * * 3/ 4dR kk T  &&&& &&&&

 the suction parameter and  the Schmidt number.0 / 0S v a && / BSc D &&

The vital physical quantities are the skin friction coefficient, the Nusselt number and the 

Sherwood Number are defined as

(18)
2

,    ,  ,
( )( )

w w w
f x x

w B wf w

xq xmC Nu Sh
u D C Ck T T


 

   
 &&

&& &&&& &&&&&&
&& && &&&& &&&&

where  the shear stress in direction, the heat flux and the mass flux, respectively , ,w w wq m&& && && x &&

given as

(19) 
2

0

00

,  ,  ,
2w w r w Bw

w yy

u u T Cq k q m D
y y y y

 


         
                      &&&&

&&&&&&&& && &&&& && && && &&
&& && && &&

Using (13), we get

(20)
 

  

21/ 2 1/ 2

31/ 2

Re ''(0) ''(0) ,   Re '(0),
2
4Re 1 1 1 (0) '(0).

3

f x x x

x x w
d

C f f Sh

Nu
R

 

  





   

 
     

 
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where  is the Reynolds number.Re ( , ) /x wxu x t  && &&&&&& &&

3. Methodology 

In the present research, a useful numerical technique namely the shooting method has 

been utilized to scrutinize the flow problem described by the transformed equations (14)-(17). 

The summary of this method is given below in following steps: 

First, convert the equations (14)-(17) into IVP (initial value problem). Then select a suited finite 

value of , say . We have the set of following first-order system   

(21)

 2

1

' ,  
' ,  

1' 1 (1 ) / 1 ,

f p
p q

q p fq K p 





 
 
             

(22)    

 
  

2 2

3

2

' ,  
4Pr 1 1 1

4' / 1 1 1 ,
31Pr Pr

2

w w
d

w
d

z

fz z
Rz

R
Nbzm Ntz A z



  
 



 


                           

(23)
' ,  

1' ' ,
2

m
Ntm Scfm z ScA m
Nb





 



    

under the boundary conditions

(24) (0) ,  (0) 1,  (0) 1 (0) , (0) 1.f S p z         

To solve the system of equations as an IVP, we require the values for  i.e. ,  i.e. (0)q ''(0)f (0)z

 and  i.e. ; however no such values are specified. The values of the initial '(0) (0)m '(0)

guesses for ,  and  are chosen and the Runge–Kutta fourth-order method is ''(0)f '(0) '(0)
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executed to acquire a solution. Then the calculated values of ,  and  at (=8) '( )f  ( )  ( )  

are compared under the known boundary conditions ,  and . The '( ) 0f   ( ) 0   ( ) 0  

step size is taken as . The technique is repeated until we obtain results correct up to the 0.01 

desired accuracy of the 10−5 level, which fulfills the convergence criterion.

4. Results and discussion

Tables 1 and 2 show the assessment of our results of  and , respectively ''(0)f '(0)

with those available results in literature. As noticed an excellent match with the published ones 

up to a significant number of digits has been obtained.

The velocity, temperature distribution and the concentration of nanoparticles for different 

values of the non-Newtonian Williamson parameter  are depicted in Figs. 2-4. From Fig. 2, the 

velocity explains a diminishing development for growing values of  in the first solution and 

thus, the momentum boundary layer thickness increases, while the velocity enhances and the 

boundary thickness decreases in the second solution. In contrast, the temperature distribution and 

the concentration of nanoparticles show an increasing behavior with increasing values of  for 

the first solution as portrayed in Figs. 3 and 4 and consequently, the thermal and concentration 

boundary layers thicknesses boost. On the other hand, for the second solution, the reverse trend 

is observed. It is also witnessed from these portrays that the velocity, temperature distribution 

and the concentration of nanoparticles are larger for a non-Newtonian Williamson fluid 

compared with a Newtonian fluid  for the first solution.  0 

Figures 5-7 preserve the variation of unsteady parameter  on the velocity of fluid, A

temperature distribution and concentration of nanoparticles. Fig. 5 indicates an increasing trend 

in velocity field with rising values of  in the first solution and in the second solution the profile A

indicates an opposite behavior. Further, it is also perceived from this portray that the velocity 
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initially increases with increasing  for first solution and after a certain value of , it starting  1 

decreases. The unsteady effect is major in the lower branch solution (second solution) compared 

to upper branch solution (First solution). The temperature distribution and concentration profile 

increase with increasing  for first and second solutions as shown in Figs. 6 and 7, respectively. A

Thus the thermal and concentration boundary layers thicknesses increase for both solutions. 

Further, these sketches fulfill asymptotically the boundary conditions and the existence of 

multiple solutions that support the validation of our obtained numerical results.  

Fig. 8 shows that due to mounting values of the Brownian parameter , the Nb

temperature distribution raises in first and second solutions, whereas the conflicting behavior is 

noticed for the concentration of nanoparticle as revealed in Fig. 9. Thus, the thermal boundary 

layer thickness increases, while the concentration boundary layer thickness shrinks. This is 

because of the kinetic energy of the nanoparticles increases due to the strength of this chaotic 

motion and as a result, the fluids temperature increases. This is because the Brownian motion at 

nanoscale and molecular levels is an important mechanism of the nanoscale level that governs 

the thermal behaviors. In systems using nanofluids, the Brownian motion captures place because 

of the nanoparticles size which can change the properties of heat transfer. As the scale size of 

particles advances to the scale of nanometer, the particles Brownian motion and its result on the 

surrounding fluids play a vital role in heat transfer characteristics. Figures 10 and 11 preserve the 

influence of the thermophoresis parameter  on the temperature distribution and concentration Nt

profile. These figures illustrate that the temperature and concentration profiles show an 

increasing trend for increasing values of  for first as well as for second solutions. This is Nt

because diffusion penetrates deeper into the fluid due to increasing values of  which causes Nt

the thickening of the thermal boundary layer as well as the concentration boundary layer.

D
ow

nl
oa

de
d 

by
 W

es
te

rn
 U

ni
ve

rs
ity

 A
t 0

5:
27

 2
9 

O
ct

ob
er

 2
01

8 
(P

T
)



13

The effects of the convective parameter  on the temperature distribution and 

concentration of nanoparticles are depicted in Figs. 12 and 13, respectively. Fig. 12 reveals that 

due to increase in the value of  resulting from the powerful convective heating at the surface, 

the temperature gradient at the surface of sheet increases. This permits the effect of thermal to 

enter deeper into the quiescent fluid. Therefore, the temperature as well as the thermal boundary 

layer thickness enhances with rising values of  for first and second solutions. It is worth 

mentioning that the constant wall temperature  can be recovered by taking sufficiently (0) 1 

large values of the convective parameter. Further  communicates an insulated surface case. 0 

Fig. 13 confirms that the concentration of nanoparticles and the boundary layer thickness 

increase with  in first and second solutions. Figs. 14 and 15 are prepared to illustrate the impact 

of radiation  on temperature distribution and concentration nanoparticles. These figures dR

showed a decreasing behavior for increasing  in first and second solutions. Thus, the thermal dR

and concentration boundary layers thicknesses become thinner and thinner in both forms. Since 

huge value of the radiation means the conduction dominance and thus, the thermal and 

concentration boundary layers thicknesses decrease. The impact of radiation is more pronounced 

on temperature distribution compared to concentration profile. In Fig. 16, the Schmidt number 

effect on the concentration of nanoparticles is shown. As expected the graph and the boundary 

layer thickness shrinks with enhancing  in first and second solutions.Sc

The impact of the non-Newtonian Williamson fluid parameter  versus  on the skin  A

friction, the local Nusselt number and the Sherwood number are shown in Figs. 17-19. It can be 

seen that multiple solutions of the similarity equations (14)-(16) subjected to (17) exist in 

decelerating flow ( ) (see Mahapatra and Nandy, 2013), while for accelerating flow (0A  0A 
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), the solution is unique. On the other hand, the dual solutions are obtained for  and the cA A

flow has no solution for , where  is the critical value of . For  (Newtonian cA A cA A 0 

fluid), the critical point looks far from negative region, so we stopped calculation at . 10A  

This is consistent with the results obtained in References (Ali et al., 2011; Rohni, 2012). For 

, the dual solutions exist for ranges of  is  and thus no solution exists for 0.3  A 1.9700A  

. It is worth mentioning that more amount of non-Newtonian parameter  causes 1.9700A   

remarkable reduction  
 
in the solution domain. For , the solution exists when  cA 0.5 

 and therefore no solution exists for . Thus it can be concluded that the 1.0000A   1.0000A  

critical point 
 

reduces when non-Newtonian parameter increases which delays the  cA

boundary layer separation. Further, due to increasing values of , the skin friction, the local 

Nusselt number and the Sherwood number decrease for the first solution and increases in case of 

second solution as illustrated in Figs. 17-19. 

The values , and  versus for several values of the unsteady 1/ 2Ref xC 1/ 2Rex xNu  1/ 2Rex xSh  S

parameter  are illustrated in Figs. 20-22, respectively and in Table 3. Fig. 20 reveals that the A

skin friction enhances with increasing  for first as well as for second solutions. In contrast, the A

values of the Nusselt number and the Sherwood number decrease with increasing  for first and A

second solutions as shown in Figs. 21 and 22.  The behavior of these results also can be seen 

through Table 2. Dual solutions are achieved for and no solution for  where  is cS S cS S cS

the critical value of . Further, the impact of  towards a critical value has been shown in S A

Table 4. The larger characteristics of unsteady parameter decrease the values of critical point. 

Thus the unsteady parameter delays the boundary layer separation.
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Figs. 23 and 24 confirm the deviations of the Nusselt number  and the 1/ 2Rex xNu 

Sherwood number  versus  for different values of the Brownian motion parameter 1/ 2Rex xSh  S

. These results prove that the values of the Nusselt number decreases and the Sherwood Nb

number raises with enlarging  in the first and the second solutions. These results are Nb

consistent with the results obtained by Rana and Bhargava (2012) in case of a nonlinearly-

stretching sheet. Therefore, by using the Brownian motion, the thermal conduction can be 

increased either by taking straight outcome due to nanoparticles that transport heat or by taking 

indirect micro-convection of the surrounding fluid individual nanoparticles. Further, the smaller 

values of  indicate that the Brownian motion is weak for the small particles and for larger Nb

values of  it shows the opposite behavior. Nb

5. Conclusions

In this research, we have investigated unsteady boundary layer flow of non-Newtonian 

Williamson nanofluid over a convectively-heated shrinking sheet with a nonlinear thermal 

radiation. The transformed ordinary differential equations were numerically solved via the 

shooting technique for several values of the pertinent parameters. The main findings are:

 Multiple results are achieved for some values of the suction and for decelerating flow only.

 Due to the non-Newtonian parameter, the velocity of the fluid decreases in the first solution 

and increases in the second solution. On the other hand, the temperature and concentration 

profiles increase and decrease in the first and the second solutions, respectively.

 Initially, the velocity distribution shows an increasing behavior and then it starts to decrease 

due to increasing values of the unsteady parameter for both solutions, while the temperature 

and concentration profiles confirm an increasing behavior in both solutions. 
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 The thermal and concentration boundary layer thicknesses develop due to the convective 

parameter for the first and the second solutions.

 The thermal radiation reduces the temperature of the fluid as well as the concentration profile 

for both solutions.

 Using the Brownian motion mechanism, the distribution of the nanoparticles could be 

arranged in the flow regime by taking larger values of  or  and also cooling of regime Nb Nt

could be achieved by taking smaller values of or .Nb Nt

 The unsteady parameter and the non-Newtonian parameter delay the boundary layer 

separation.
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 in case of stretching sheet .10,  0.1Sc   '(0) 1f 
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0.1 0.0925 0.09250.3 0.2 0.0861 0.0861
0.1 0.0923 0.09230.4 0.2 0.0854 0.0854
0.1 0.0921 0.09210.5 0.2 0.0845 0.0845

Table 3: Values of skin friction, Nusselt number and Sherwood number versus for different S
values of  when are A 0.3,  1,  1.5,  1,  1.5,  2,  0.3w dNb Nt Sc Q R       
fixed.

1/ 2Ref xC 1/ 2Rex xNu  1/ 2Rex xSh 

S A
First solution Second solution First solution Second solution First solution Second solution

-1 2.0069 -1.6142 1.0911 1.0837 2.0890 1.7582
-0.5 2.1436 -0.9050 1.0889 1.0785 1.9692 1.58392.8

-0.2 2.2258 -0.3232 1.0871 1.0733 1.8844 1.4394
-1 1.3650 -0.5630 1.0833 1.0762 1.7062 1.5043

-0.5 1.5551 -0.1125 1.0788 1.0673 1.5666 1.31162.4

-0.2 1.6687 0.2284 1.0748 1.0570 1.4615 1.1399
-1 0.8513 0.0694 1.0765 1.0725 1.4969 1.4049

-0.5 1.1381 0.3225 1.0696 1.0614 1.3469 1.21092.2

-0.2 1.3010 0.5207 1.0630 1.0482 1.2278 1.0344

Table 4: Critical values of for different values of  when cS A 0.3,  1,  1.5,  1,  Nb Nt Sc    

 are fixed.1.5,  2,  0.3w dQ R   

A cS
-1 2.1528
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-0.5 2.1229
-0.2 2.0990

Figure 1: Sketch of the physical flow problem.

Figure 2: The velocity profiles for different values of .
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Figure 3: The temperature profiles for different values of .

Figure 4: The concentration profiles for different values of .

Figure 5: The velocity profiles for different values of .A
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Figure 6: The temperature profiles for different values of .A

Figure 7: The concentration profiles for different values of .A

Figure 8: The temperature profiles for different values of .Nb
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Figure 9: The concentration profiles for different values of .Nb

Figure 10: The temperature profiles for different values of .Nt

Figure 11: The concentration profiles for different values of .Nt
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Figure 12: The temperature profiles for different values of .

Figure 13: The concentration profiles for different values of .

Figure 14: The temperature profiles for different values of .dR
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Figure 15: The concentration profiles for different values of .dR

Figure 16: The concentration profiles for different values of .Sc

Figure 17: The skin friction  versus  for different values of .1/ 2Ref xC A 
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Figure 18: The Nusselt number versus  for different values of .1/ 2Rex xNu  A 

Figure 19: The Sherwood number versus  for different values of .1/ 2Rex xSh  A 

Figure 20: The skin friction  versus  for different values of .1/ 2Ref xC S A
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Figure 21: The Nusselt number versus  for different values of .1/ 2Rex xNu  S A

Figure 22: The Sherwood number versus  for different values of .1/ 2Rex xSh  S A

Figure 23: The Nusselt number versus  for different values of .1/ 2Rex xNu  S Nb
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Figure 24: The Sherwood number versus  for different values of .1/ 2Rex xSh  S Nb

Nomenclature

positive constants, ,a c d

 unsteady parameterA

 first Rivilin-Erickson tensor1A

concentration of nanoparticlesC&&

skin friction coefficientfC

 specific heatpc

Brownian diffusionBD

coefficients of thermophoresis diffusionTD

dimensionless stream functionf

coefficient of heat transferfh

identity tensorI

 thermal conductivityk

 mean absorption coefficient*k&&
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mass fluxwm&&

 Brownian motion parameterNb

 thermophoresis parameterNt

 local Nusselt numberxNu (

 Prandtl numberPr

radiative heat fluxrq

 heat fluxwq&&

 local Reynolds numberRex(

 radiation parameterdR

 Cauchy stress tensorS&&

 suction parameterS

 Schmidt numberSc

 timet&&

 temperatureT&&

 temperature of the hot fluidfT&&

 free stream temperatureT
&&

 fluid wall temperaturewT&&

 variable velocity of suctionwv&&

 positive constant0v

  velocity components ,u v&&&&

  Cartesian coordinates,x y&&&&
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Greek symbols

 thermal diffusivity&&

  Williamson parameter

extra stress tensor&&

 convective parameter

 second invariant tensor

 dimensionless temperature

 
temperature ratio parameterw

 kinematic viscosity

 limiting viscosity at zero shear stress0&&

 limiting viscosity at infinite shear stress&&

 specific heat capacitance of nanofluid( )p fc

 ratio b/w the heat capacity and specific heat capacitance of nanoparticle&&

 shear stress in directionw&& x 

 Stefan-Boltzmann constant*&&

 stream function

 similarity variable

 time constant&&

Subscripts

condition at wallw

condition at free stream

Superscripts
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' derivative w.r.t. 
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