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A B S T R A C T

A mathematical model is presented for an axisymmetric flow of a Newtonian fluid through a permeable tube
filled with porous medium and slip at the wall. The bulk flow rate is prescribed as a decreasing function of axial
distance. The governing coupled partial differential equations are solved analytically using Adomian decom-
position method and numerically using a second order finite difference scheme. Numerical method is validated
by already published work and a good agreement is observed between the two solutions. Trusting this validity,
effects of pertinent parameters on the flow variables such as velocity components, wall shear stress and pressure
drop are discussed graphically. This study reveals that the slip parameter (ϕ), reabsorption parameter (α) and
permeability parameter (k) have significant influences on flow variables involved in the problem. Creeping flow
(Re=0), flow without porous medium → ∞k( ) and flow with no slip =ϕ( 0) at the wall are the limiting cases of
this study.

Introduction

The study on the flow in permeable ducts is of practical interest in
biological and engineering problems [1–5]. This is an idealization of the
behavior of flow that occurs in everyday life in corresponding geome-
tries. Many processes such as transpiration cooling, membrane filtra-
tion, gaseous diffusion in binary mixtures, physiological blood flow in
artery and vein, flow in proximal tubule of a kidney and artificial
dialysis may be modeled by the flow in permeable ducts.

Theoretical and experimental models representing filtration pro-
cesses are proposed by many investigators. Berman [6] for the first
time, investigated the behavior of steady laminar flow of an in-
compressible fluid through a permeable channel. He obtained expres-
sions for velocity profile and pressure drop through second order per-
turbation by assuming uniform wall suction. Yuan et al. [7,8] extended
the work of Berman [6] for small and large seepage rates. Terrill [9]
studied the two-dimensional flow problem in a porous pipe and found
an exact solution. Jocelyne et al. [10] carried out a detailed study on
the laminar flow in porous channels and discussed variations in pres-
sure drop, permeation flow, axial and transversal velocity profiles along
the length of the filter channel. He considered rectangular channel with

one permeable wall and a permeable tubular channel to study the non-
symmetrical transverse flow as well as symmetrical radial flow. Further,
Sandeep [11] examined the flow in both a rectangular slit and a tube
with porous boundaries and solved the problem analytically to obtain
pressure drop of fluid.

The processes of ultrafiltration and reverse osmosis have applica-
tions in various parts of human body and their uses in extracorporeal
processing of fluids in the body. In these processes the fluid is actually
pumped through permeable ducts at elevated pressure. Many re-
searchers investigated the flow through permeable channels/ tubes
with application to flow in human kidney. Kelman [12] carried out
theoretical study on the flow in nephrons by considering normal velo-
city as an exponentially decaying function of downstream distance.
Macey [13,14] obtained solutions for creeping flows with the possibi-
lity of linear and exponential variations of absorption rates with axial
distance. However his solutions were incomplete. Later, Kosoniski [15]
provided complete solutions and extended the work for flow between
parallel slits. Muthu and Berhane [16,17] investigated flow in channel
with absorbing walls and non-uniform cross-section. They applied
perturbation method to study the mathematical model related to flow
in human kidney. Marshal and Trowbridge [18] used physical
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conditions instead of prescribing the permeation velocity at the tube
wall and calculated leakage flux and fractional reabsorption. Radhak-
rishnamacharya et al. [19] examined the flow problem of Newtonian
fluid in a porous tube of varying cross-section with an application to
flow in renal tubule of human kidney.

In the preceding studies, researchers assumed the axial component
of velocity to be equal to zero at the permeable boundaries. Although
this is a widely used condition for the analysis of flows past solid
boundaries but it has no empirical justification in the case of flow over a
permeable boundaries. It has been now accepted by many investigators
that most of the polymeric materials tends to slip on the solid walls. A
detailed study on the flow of Johnson-Segalman fluid is done by Rao
and Rajagopal [20] which provides information about the effects of slip
condition on the Newtonian fluid flow. Moustafa [21] discussed the
importance of considering slip at the boundaries. This is known from
literature that slip velocity and shear rate are directly proportional at
the boundary. Slip velocity is actually connected to a thin layer of the
streamwise flowing fluid just beneath the permeable boundary. Fluid in
the thin layer is pulled along by the fluid present above the porous
boundary. Moreover, consideration of slip is also useful in describing
certain problems in many other applications [22–28].

Furthermore, in above mentioned studies no attention has been
given to the flow through porous medium. However it is known from
literature review that many vascular and biological tissues, the blood
vessels and renal system are assumed to be porous by nature. Khaled
[29] provided a detailed review on fluid flow through porous medium
having physiological applications. Therefore it is concluded that effects
of porous medium together with slip effects on the flow characteristics
seem to be important and thus deserve special attention.

Fluid models consisting of permeable ducts with constant flux in
normal direction are not an appropriate choice for the analysis of flow
problems which do not involve uniform flow in the normal direction at
the boundaries. Recently many authors [30–32] investigated the phy-
siological flows using different geometries with the assumption of
variable flow rate in axial direction resulting from variable flux at the
boundaries. They found the solutions both analytically and numeri-
cally. Very recently the researchers [33,34] studied the blood flow
problems in circular tubes and obtained analytical solution using a
technique namely, Adomian decomposition method (ADM) [35]. This
technique provides computable and accurate solutions for sufficiently
small number of terms. One of the advantages of this method is that it
does not require simplifications which some times lead to change the
physical behavior of the flow models. This method tackles the problems
in a simple and straightforward way without linearization, perturbation
or any restrictive assumption which results in physically more realistic
solutions [35–39]. Moreover, the second order finite difference method
is applied and considered as the numerical solution for validity of ADM.

The increasing number of biophysical and industrial flow problems
forces us to extend the available hydrodynamic solutions in order to
include all possible issues and find solutions using applicable analytical
techniques. Keeping in mind the above discussion, purpose of this work
is to analyze the two-dimensional flow of a Newtonian fluid in the
presence of porous medium in a tube with slip at the wall. Flow
equations are considered with non-zero Reynolds number and flow rate
being a decreasing function of axial distance. Investigation of influence
of Reynolds number Re, permeability parameter k and slip coefficient ϕ
on various flow parameters is the major concern of this work. This
study provides an extended form of already available results in litera-
ture so that published results can be achieved by appropriate sub-
stitutions of flow parameters. Present work is helpful in providing in-
formation for the improvement of available models for the solution of
different biophysical and engineering flow problems.

This manuscript is arranged as follows: Section 1 provides in-
troduction of the problem. In Section 2, hydrodynamical equations and
non-uniform boundary conditions are presented. In Section 3, an ap-
proximate solution of the problem is obtained. Section 4 is for results

and discussion and concluding remarks are presented in Section 5.

Formulation of the problem

A steady laminar flow of an incompressible Newtonian fluid is
considered in a two-dimensional permeable tube filled with porous
medium as depicted in Fig. 1. The tube of radius R is considered long
enough in order to neglect the entrance and end effects. A partial slip
condition is assumed at the permeable wall of the tube and the bulk
flow rate is considered as a decreasing function of axial distance. The
continuity and momentum equations governing such flow are [30–34]:
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where ′ ′ ′u z r( , ) and ′ ′ ′v z r( , ) are velocity components in axial ′z and
radial ′r directions respectively, ρ is the density, μ is the viscosity,

′ ′ ′p z r( , ) is the pressure of the fluid and ′k is the permeability of porous
medium. Appropriate boundary conditions for the problem under
consideration are

Regularity condition [30–34]:
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The reabsorption at the wall is prescribed by considering bulk flow
as a decreasing function of downstream distance. That is the flow rate
across a cross-section of the tube is given by [30–32]
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where ′ ′ =F α z( ) 1 for ′ =α 0 and decreases with ′ ′ ⩾z α; 0 is the re-
absorption coefficient; Q0 is the flux across the cross-section at ′ =z 0.

Pressure at the inlet of the tube is

′ ′ ′ = ′ ′ = ′ =p x y p z r( , ) at 0, 0.0 (7)

Boundary condition (5) is the slip-flow condition proposed by Beavers

and Joseph [23]. In Eq. (5), ′ =
′

ϕ k
β

0 is the slip coefficient where ′k0 is
the constant wall permeability and β is the dimensionless constant
depending on the wall characteristics.

Introducing the following dimensionless quantities

Fig. 1. Schematic diagram of flow through a porous medium in a tube.
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Eqs. (1)–(3) reduce to
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where =Re Q
πRν2

0 is the Reynolds number, = ′p pπR
μQ l
2 4

0
is the dimension-

less pressure and =δ R
l is the ratio of radius to the length of the tube.

Defining vorticity function as
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Eqs. (10)–(11) in terms of vorticity function are
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We further define stream function as
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Using Eq. (15) into Eqs. (13)–(14) and then eliminating p between the
resulting equations, we arrive at the following single partial differential
equation
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Boundary conditions in terms of stream function are as follows
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where = ′ϕ ϕ R/ .
We assume = −F αz e( ) αz. This assumption is important from phy-

siological point of view suggested in [12] and followed by many in-
vestigators [16,17,19,30–32].

Solution of the problem

We solve the problem (16)–(17) analytically by Adomian decom-
position method (ADM) [35–39] and numerically by a second order
finite difference scheme. A comparison is made between the two solu-
tions in the form of a Table 2 which shows a good agreement.

Analytical solution

For analytical solution, we define a linear operator as
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is the non-linear part.
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To proceed further, we first find inverse operator −L 2. For this, consider
equation =Lψ G. This equation has a solution
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In above equation a z b z c z d z( ), ( ), ( ), ( ) are constants which are to be
determined from the given boundary conditions. We now, decompose u
and Nψ as follows [36]
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From Eqs. (25) and (27), we may write
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where
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Boundary conditions take the following form
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Solving Eq. (25) along with the boundary conditions (35), we get the
final form of ψ0 as

= +ψ f z r g z r( ) ( ) ,0
4 2 (37)

where

=

= −

−
+

+ −
+

−

−

f z

g z

( ) ,

( ) .

ϕδ α e
ϕ

δ α ϕ e
ϕ

(2 )
2(4 1)

[4 (8 ) ]
2(4 1)

αz

αz

2 2

2 2

(38)

From Eqs. (31)–(32) ψ1 is determined as
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In Eqs. (41)–(42), subscripts with f and g represent the order of deri-
vative with respect to z. a z( )1 , c z( )1 are obtained from boundary con-
ditions (36) as

= −
+

+ + + + +a z
ϕ

ϕ ϕ ξ ϕ η( ) 4
1 4

[4(1 10 )Ω 3(1 8 ) 2(1 6 ) ],1
(43)

=
+

+ + + + +c z
ϕ

ϕ ϕ ξ ϕ η( ) 2
1 4

[3(1 12 )Ω 2(1 10 ) (1 8 ) ].1
(44)

Thus two term approximate solution is

= +
= + + + +

ψ ψ ψ
r ξr ηr mr nrΩ ,

0 1
10 8 6 4 2 (45)

where

= +

= +

m z f z

n z g z

( ) ( ) ,

( ) ( ) .

a z

c z

( )
4
( )
2

1

1
(46)

Now velocity components can be obtained from Eqs. (12) and (42) as

= + + + +
= + + + +

u r ξr ηr mr n
v r ξ r η r m r n r

10Ω 8 6 4 2 ,
Ω .

8 6 4 2

1
9

1
7

1
5

1
3

1 (47)

Here superscripts with ξ η mΩ, , , and n represent the first derivative
with respect to z.

We see that expression for streamfunction is similar to the expres-
sions already available in literature [33,34].

Pressure distribution

Pressure distribution for the problem under consideration can be
found by integrating Eqs. (10) and (11) as

∫

∫ ∫

⎜ ⎟
⎛
⎝

⎞
⎠

= ∂
∂

+ ⎡
⎣⎢

∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ⎤
⎦⎥

− ⎡
⎣

∂
∂

+ ∂
∂

⎤
⎦

+

p z r δ u
z r r

r u
r

u
k

dz

Reδ u u
z

dz v u
r

dz

, 1

a constant of integration.

2

(48)

Mean pressure drop is defined as

∫
=p z

πrp z r dr
π

( )
2 ( , )

.0
1

(49)

Therefore, mean pressure drop between =z 0 and =z z0 can be written
as

= −p z p p zΔ ( ) (0) ( ),0 0 (50)

Wall shear stress

Wall shear stress τw in dimensionless form is defined as

= −⎛
⎝

∂
∂

+ ∂
∂

⎞
⎠ =

τ u
r

v
z

.w
r 1 (51)

Upon use of Eq. (47), we get

= − + + +τ ξ η m8[10Ω 6 3 ].w (52)

Numerical solution

To get a numerical solution by finite difference scheme of second
order, we rewrite Eq. (16) as follows

∂
∂

−
∂
∂

+
∂
∂

= − ⎡
⎣⎢

∂
∂

∂
∂

+
∂
∂

−
∂
∂

∂
∂

⎤
⎦⎥

+δ
ζ

z r
ζ
r

ζ
r

δRe
r

ψ
r

ζ
z r

ψ
z

ζ
r

ψ
z

ζ
r k

ζ1 1 2 1 1 ,2
2

2

2

2 2

(53)

where ζ is given by

= − =
∂
∂

−
∂
∂

+
∂
∂

ζ r δ
ψ

z r
ψ
r

ψ
r

Ω 1 .2
2

2

2

2 (54)

The solution procedure described here is based on Eqs. (53)–(54) in-
volving the stream function ψ and the vorticity function ζ as variables.
The boundary conditions are given in Eq. (17). An iterative finite dif-
ference solution procedure is discussed here. A series of evenly spaced
nodal lines are used as shown in Fig. 2. The grid spacings are thus
constant in both the −z and −r directions and are equal to zΔ and rΔ
respectively.

Consider the nodal points shown in Fig. 3. In terms of the values at
these nodal points the finite-difference form of Eqs. (53) and (54) are
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The following boundary condition given in (17)

∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
r r

ψ
r

1 0

is satisfied if =ψi,2 ψi,1. Since =ψ 0 and =r 0, so that = =ψ ψ 0i i,2 ,1 and
from Eq. (54), we have

−
∂
∂

+
∂
∂

=
r

ψ
r

ψ
r

ζ1 ,
2

2

from where we find that =ζ 0i,1 , = …i M1, 2, , . At =r 1,
= = −ψ F αz e( ) αz , so that Eq. (54) gives us

∂
∂

=δ
ψ

z
ζ ,2

2

2

which leads to = −ζ ϕδ α ei N
αz

,
2 2 i.

The set of dimensionless nonlinear finite difference equations
(55)–(56) combined with the associated boundary conditions are solved
iteratively starting from the guessed values of the variables at all points.
As r varies from 0 to ψ1, varies from 0 to =e αz, therefore we assume that
the values of ψ varies linearly so that we may have guessed values of ψ
at the internal nodal points

=
=
−

= = … = … ==ψ
j

N
e i M j N

1
1

, 1, 2, , and 2, 3, , 1.i j
αz

,

and using the Eq. (54), we find the guessed values of ζi j, .
To find new values of ζi j, , Eq. (53) is applied sequentially at all in-

ternal nodal points. Right-hand side of Eq. (53) is found by using the
assumed values of variables. Further, under-relaxation is used so that
“updated” values of ζi j, are actually taken as

= + −ζ ζ r ζ ζ( ),i j i j i j
calculated

i j,
1

,
0

, ,
0

where r is the relaxation factor <( 1) and the value ζi j
calculated
, is given

directly by Eq. (53). Here the subscripts 0 and 1 represent the condi-
tions at the beginning and end of the iteration step respectively. This
step is repeated before we proceed to the next step of the procedure.
This process actually accelerates the convergence.

In the next step, similar procedure is done with the Eq. (54). Again
under-relaxation is used so that the “updated” values of ψi j, are actually
taken as

= + −ψ ψ r ψ ψ( ),i j i j i j
calculated

i j,
1

,
0

, ,
0

where r is the relaxation factor <( 1) and the value ψi j
calculated
, is given

directly by Eq. (54). This step is also repeated before we proceed to the
next step of the procedure.

Above mentioned steps are repeated again and again until the va-
lues of variables cease to change from one iteration to the next by less
than some prescribed value. Once the distributions of ψ and ζ are found,
the distributions of u, v and p are actually been found.

Results and discussions

The present analysis is carried out in order to understand the be-
havior of steady two-dimensional laminar flow of an incompressible
Newtonian fluid. A permeable tube filled with porous medium is taken
for the flow analysis by considering bulk flow rate as an exponentially
decaying function of downstream distance. Flow variables such as axial
and radial components of velocity u and v respectively, wall shear stress
τ( )w and mean pressure drop p(Δ ) are computed numerically and in-
fluences of various parameters such as reabsorption parameter (α),
permeability parameter (k), and slip coefficient (ϕ) are discussed
through graphs. A comparison of this work with the already published
work [32] shows a very good match (Table 1). Recall that the effects of
porous medium and reabsorption at the wall in the presence of slip are
the prime objectives of this study. In this analysis, we have chosen the
moderate values of pertinent parameters as =δ 0.1, =α 1.5, =Re 1,

=ϕ 0.25 and =k 0.1.
The effects of flow parameters on axial velocity component (u) and

radial velocity component (v) are shown graphically. Effects of α k, and
ϕ on u are shown in Figs. 4–6 at a cross section =z 0.3 of the tube. It can
be observed from Fig. 4 that u is a decreasing function of α. Physically
this means that u decreases because of more reabsorption from the wall.
It is observed from Fig. 5 that u increases with the permeability para-
meter k up to =r 0.6 and a reverse trend is seen for >r 0.6. Fig. 6 re-
veals that ϕ produces significant influence on axial velocity. It is clear
that axial velocity decreases near the center whereas it increases near
the wall by increasing ϕ. Figs. 7–9 show the effects of α k, and ϕ on
radial velocity. It is observed that radial velocity increases significantly

Fig. 2. Grid system used.

Fig. 3. Nodal points used in obtaining finite difference equations.

Table 1
Comparison of present study and published work for pressure drop over the
length of the tube for limiting case of =ϕ 0 and → ∞k when =Re 1, =δ 0.1
and =z 1.

α Published work [32] ADM Numerical

1 9.61315 9.61315 9.61315
1.1 9.18640 9.18640 9.18639
1.2 8.78600 8.78600 8.78599
1.3 8.40990 8.40990 8.40989
1.4 8.05623 8.05622 8.05623
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with the increase of α and k (Figs. 7–8). Furthermore, radial velocity
decreases with the increase of ϕ (Fig. 9).

Effects of α, k and ϕ on wall shear stress τw are represented in
Figs. 10–12. Wall Shear stress decreases in all the cases. By increasing α,
decrease in wall shear stress is more significant near the wall than near
the center. Further, wall shear stress significantly decreases by in-
creasing k and ϕ.

Moreover, mean pressure drop is calculated over the whole length
of the tube for various values of α, k and ϕ. As shown in Figs. 13–15,
mean pressure drop decreases by increasing all the parameters α, k and
ϕ. Permeability parameter k have a great influence on mean pressure
drop. It tends to be negative for higher values of k which shows that
reverse flow is expected for high values of k.

A comparison between the published [32] and present work can be
seen from Table 1 where a good agreement can be seen for the values of
mean pressure drop. Moreover, the parameter α shows the same be-
havior on the flow as observed in previous studies [30–32].

Table 2 shows a comparison between analytical and numerical so-
lutions. A good comparison for different values of slip parameter ϕ can
be seen from this table.

Conclusions

In this study, problem of an incompressible Newtonian fluid flow
through a porous medium in a permeable tube with partial slip at the
wall is investigated. The novel features of this study are the con-
sideration of porous medium inside the permeable tube together with
slip at the wall particularly to the renal flow. Moreover full Navier
Stokes equations are attempted to solve analytically and numerically.

Following are the major findings concerned with the present study.

• Axial velocity increases with increase in k up to a certain distance
from the centre of the channel. However it decreases as we move

towards the wall of the channel. Also u decreases when we increase
the values of α and ϕ.

• Radial velocity increases with increasing α and k while it decreases
by increasing ϕ.

• Shear stress and mean pressure drop decrease with increasing α, ϕ
and k.

• Solutions, disregarding inertial effects can be achieved as limiting
case by choosing =Re 0.

• The published work [32] is a special case of the present work when
no slip condition =ϕ( 0) and no porous medium → ∞k( ) is con-
sidered.

• Numerical results are validated with ADM and published work [32].

• A second order finite difference method is used for the validity of
ADM and a good agreement has been observed by comparing ADM
solution with the numerical solution.

• The present study may readily be extended for the flows in tubes
with varying cross sections.

The present study possibly bears the potential to investigate the
change that takes place in velocity, shear stress and pressure drop of the
fluid due to α, k and ϕ. It is interesting to note that α, k and ϕ have
significant influences on velocity, shear stress and pressure drop.
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Fig. 12. Effect of ϕ on shear stress.
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Fig. 15. Effect of ϕ on pressure drop.

Table 2
Comparison of ADM and numerical method for pressure drop when =Re 1,

=δ 0.1, =α 1.5, =k 0.1 and =z 1.

ϕ ADM Numerical Percentage error

0 7.72301 7.72332 × −3.88 10 2

0.1 5.48652 5.48656 × −7.29 10 3

0.2 4.23362 4.23363 × −2.36 10 3

0.3 3.43231 3.43237 × −1.75 10 2

0.4 2.87577 2.87581 × −1.39 10 2
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This study provides information for any flow situations occurring in
engineering or biophysical problems where fluid flows through porous
medium and bulk flow rate decreases with axial distance. Hopefully
model presented here is an improvement of already available models
and may be useful in filtration processes or in the treatment of certain
disorders of the kidney and cardiovascular systems.
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