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Abstract
The amazing features of carbon nanotubes (CNTs), such as lightweight, high thermal conductivity, good electrical conduc-
tivity, mechanical and chemical stability, and physiochemical compatibility, make them highly desirous materials for use in 
the electrochemical gadgets. Having such magnificent characteristics of carbon nanotubes in mind, our aim in this study is 
to examine the time-dependent squeezing nanofluid flow of water-based single- and multi-walled carbon nanotubes (SWNTs 
and MWNTs) in attendance of homogenous–heterogeneous (h–h) reactions between two parallel disks. The present study 
further comprises the impacts of magnetohydrodynamics (MHD) and Cattaneo–Christov (C–C) heat flux. Numerical solu-
tion of ordinary differential equations after engaging apposite transformations is computed. Concentration, temperature, 
velocity, local Nusselt number, and skin friction coefficient are addressed. Presented analysis reveals that skin friction and 
Nusselt number show opposite behavior for squeezing parameter Sq for both water-based SWNTs and MWNTs. Furthermore, 
the velocity field grows for mass transfer parameter. An outstanding consensus is achieved when our presented results are 
compared with an already studied problem in limiting case. Thus, dependable results are being presented.

Keywords Squeezing flow · Carbon nanotubes · Homogenous–heterogeneous reactions · Cattaneo–Christov heat flux

Introduction

Nanoliquids with exceptional heat transportation character-
istics is the most debated subject of today’s science owing 
to their amazing heat transport topographies in comparison 

to ordinary heat transport fluids (Das et al. 2006; Yu et al. 
2007). Nanofluids are characterized as the finest coolant in 
numerous industries such as optical manufacturing, micro-
electronics and transportations (Sheikholeslami and Davood 
Domiri 2015). For heat transport applications, nanofluids 
possess promising thermophysical features such as thermal 
conductivity, viscosity, specific heat, and density. The low 
(density, viscosity) and high (thermal conductivity, specific 
heat) are the ideal features of efficient coolants as far as heat 
transport applications are concerned. The available literature 
pertaining to heat transportation of nano-liquids is primar-
ily based on an improvement in performance of coolants. 
These coolants can work in different temperature ranges 
with small viscosity and high thermal conductivity. After 
the pioneering work of Choi (1995), profuse theoretical and 
experimental studies (Sheikholeslami and Zeeshan 2017; 
Sheikholeslami and Houman 2018; Sheikholeslami et al. 
2015, 2018a, b; Lu et al. 2018) are presented highlighting 
various aspects of nano-liquids.

The concept of carbon nanotubes was introduced by 
Iijima (1991). The CNTs are single or multi-walled, (SWNTs 
and MWNTs) cylindrical-shaped rolled graphene sheets. 
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Because of their state-of-the-art physicochemical features, 
and thermal and mechanical characteristics, CNTs are con-
sidered as the material of the twenty-first century. Moreover, 
CNTs are environmentally friendly materials because these 
are comprised of carbon chains. So, it becomes necessary 
to examine the features of CNTs on heat transport in fluid 
flows. Xue (2005) discussed the transport characteristics of 
CNT-based composites. The heat transfer behavior of nano-
liquid flow with CNTs past a horizontal tube is examined by 
Ding et al. (2006). Lu et al. (2017) described the effects of 
CNT-based nanofluid with binary chemical reaction, (C–C) 
heat flux and activation energy. The flow of nano-liquid with 
CNTs with Marangoni convection and thermal radiation 
is deliberated by Hayat et al. (2017a). Khan et al. (2017a, 
b) numerically scrutinized the CNT nano-liquid with slip 
velocity past two non-parallel walls using the RK–Fehlberg 
method. Three-dimensional CNT-based nano-liquid flow 
past a nonlinear stretched surface with (h–h) reaction is dis-
cussed by Zakir et al. (2018).

The interesting features of heat transfer in various indus-
trial and engineering applications have expansive demands 
in fuel cells, transportations, nuclear reactors, drug targeting, 
cooling towers, microelectronics, etc. In general, thermal con-
ductivity is taken as constant in such procedures. However, 
logical evidence requires variable features from these proper-
ties. A linear change in these properties is observed for fluid 
metals when the temperature ranges from 0F to 400F (Pal 
2013; Vajravelu et al. 2013). The classical Fourier law of heat 
conduction (20) has been a standard benchmark to measure 
the heat transfer behavior in numerous practical situations. But 
owing to parabolic energy equation, the system encountered 
by an initial disturbance is called paradox in heat conduction. 
This drawback in the Fourier’s model was tackled by Catta-
neo (1948) by addition of thermal relaxation time. By doing 
so, the modified law has produced the hyperbolic energy 
equation for temperature profile and transportation of heat is 
allowed to propagate via thermal waves with limited speed. 
Many practical applications highlighting such heat transpor-
tation may be quoted that vary from modeling of skin burn 
injury to nano-liquid flows [see Tibullo and Zampoli (2011) 
and Refs. therein]. There are many materials such as sand 
(21 s),  NaHCO3 (29 s) and biological tissues (91–100 s) that 
possess enough large thermal relaxation time. To maintain 
the material invariant formulation, Christov (2009) inserted 
the Oldroyd’s upper-convected derivative for time derivative 
in Maxwell–Cattaneo’s model. Now-a-days, this improved 
model is labelled as C–C heat flux model. Han et al. (2014) 
instituted the analytical solution of viscoelastic with veloc-
ity slip boundary and C–C heat flux. The rotating flow of 
the upper convected Maxwell fluid with C–C heat flux past a 
linearly stretched surface is examined numerically and analyti-
cally by Mustafa (2015). Khan et al. (2015) deliberated the 
work of Mustafa for an exponential stretched surface. Hayat 

et al. (2017b) studied flow of Jeffery fluid past a stretching 
cylinder with the impacts of stagnation point and C–C heat 
flux analytically. Lately, Ramzan et al. (2016, 2017) explored 
2D Williamson and 3D Maxwell fluid flows with h–h reac-
tions and C–C heat flux models accompanied by convective 
boundary conditions. Some more recent studies discussing 
exciting impact of C–C heat flux effect may be seen in Liu 
et al. (2017), Reddy et al. (2018) and Mustafa et al. (2018).

The presence of h–h reactions in chemical reactions is 
inevitable. The chemical reaction process in certain cases is 
relatively slow or even not at all in some cases. To overcome 
this dilemma in the latter case, the presence of the catalyst 
is a must. The interaction between these reactions involving 
reactant species’ consumption and the resultant refined prod-
uct at distinct rates within the liquid and on the surface of the 
catalyst is very complex. Examples may include combustion, 
biochemical systems, catalysis, etc. Chaudry and Merkin 
(1994) deliberated the free convection flow for h–h reac-
tions near the stagnation point. Khan and Pop (2012) also 
extended the problem of Merkin to the viscoelastic fluid. 
The case of 2D viscous fluid flow with h–h reactions near a 
stagnation point past a permeable wall using finite difference 
method was also considered by Khan and Pop (2010). The 
problem of nanofluid flow with nanotubes considering the 
effects of Newtonian heating with h–h reactions is studied 
by Hayat et al. (2015). Hayat et al. (2016a, 2016b, 2016c, 
2016d) also deliberated the combination of h–h reactions 
with C–C heat flux with different fluid combinations. Khan 
et al. (2017) investigated the 3D Sisko fluid flow with effects 
of h–h reactions with C–C heat flux.

A literature survey indicates that abundant research arti-
cles are available pertaining to nanofluid flows with com-
bined impacts of the h–h reactions and C–C heat flux past 
linear/nonlinear/curved stretching surfaces. Comparatively, 
less research work is done with nanotubes and as far as our 
knowledge is concerned no study so far is conducted for the 
nano-liquid squeezing flow with CNTs between two disks 
with impacts of both h–h reactions with C–C heat flux. Thus, 
our prime objective is to examine the water (base) nano-
liquid flow with SWNTs and MWNTs past two disks with 
impacts of C–C heat flux and h–h reaction. Numerical solu-
tion of the subject model is acquired utilizing bvp4c func-
tion of the MAPLE software. Influence of arising parameters 
on Nusselt number and skin friction are depicted through 
graphical illustrations with the requisite discussion.

Mathematical modeling

Consider an unsteady, incompressible two-dimensional 
MHD water-based nanoparticle flow amid two infinitely 
parallel disks having a distance z = h(t) = H(1 − �t)0.5 . We 
have considered nanoparticles of two kinds, SWCNTs and 
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MWCNTs, with the base fluid, i.e., water. Moreover, the 
magnetic field B0(1 − �t)−0.5 is directed in the normal direc-
tion to the disks. The induced magnetic field is not consid-
ered because we have taken small Reynolds number. Here, 
the temperature Th refers to the upper disk z = h(t) and Tw for 
the lower disk z = 0 . Furthermore, the upper disk z = h(t) is 
moving to and fro from the immobile and permeable lower 
disk z = 0 with the velocity dh

dt
 . The physical sketch of the 

presented model is plotted in Fig. 1.
The model for homogeneous (isothermal cubic autocata-

lytic) and heterogeneous reactions with two chemical spe-
cies A* and B* proposed by Merkin and Chudhary (1994) 
is given by

where concentrations for the chemical species B* and A* are 
symbolized by b and a and kj, (j = c, s) are the rate quantities. 
Both reaction forms are supposed to be isothermal. Applying 
the boundary layer estimation, the governing equations of 
the problem can be stated as
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where DA and DB are the diffusion coefficients corresponding 
to the chemical species A* and B*. The appropriate boundary 
conditions are specified by

The thermophysical traits (specific heat, density and 
thermal conductivity) of the base fluid (water) and carbon 
nanotubes (SWCNTs and MWCNTs) are given in Table 1.

The mathematical form for the thermophysical proper-
ties are
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Fig. 1  Physical diagram of the problem

Table 1  Thermophysical characteristics of the base fluids and CNTs

Physical properties Base fluid (water) Nanoparticle 
(MWCNTs)

Nanoparti-
cle (SWC-
NTs)

Cp (J/kg k) 4179.00 796 425
� (kg/m3) 997.100 1600 2600
k (W/mk) 0.61300 3000 6600
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where �f, �nf, �, ��CNT, �f, �nf, kCNT, knf, and kf denote 
dynamic viscosity of the fluid, dynamic viscosity of the 
nanofluid, volume fraction of the nanoparticle, volume frac-
tion of the carbon nanotubes, density of the fluid, nanofluid’s 
density, nanotubes thermal conductivity, thermal conductiv-
ity of the nanofluid and the base fluid’s thermal conductivity, 
respectively.

Similarity transformation

The following non-dimensional transformation was used to 
change the above nonlinear partial differential equations to 
dimensionless ordinary differential form, i.e.,

Continuity equation is automatically satisfied, and 
Eqs. (4)–(9) become

with
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strength of heterogeneous reaction.
In general, the chemical species B* and A* will not be 

identical, but we can anticipate that these will be analogous 
in size. In such a case, we suppose that the diffusion species 
coefficients DB and DA are alike, i.e., � = 1, thus we have

Now applying the above property, Eqs. (14) and (15) and 
their corresponding boundary conditions take the form

Friction factor and local Nusselt number

The dimensional form of the Cfr (skin friction coefficient) 
and Nu (the local Nusselt number) is categorized as

Using Eq. (11) in Eq. (20), we acquire
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Results and discussion

To discuss the fluid flow behavior and heat transfer, results 
are sketched for axial velocity f (�) , radial velocity f �(�), and 
temperature profile �(�) and for concentration field h(�) for 
distinct values of flow parameters say squeezing parameter 
Sq , Hartmann number M , the suction parameter s , the homo-
geneous reaction parameter k1 , the thermal relaxation param-
eter � , the Schmidt number Sc and the heterogeneous reaction 
parameter k2 . For this, we fixed different flow parameters’ 
values as s = 0.4, M = 0.5, Sq = 1.0, Pr = 6.2, � = 0.5,

� = 0.1, k1 = 0.7 = k2, Sc = 1.0. The outcomes are 
acquired for both single-walled carbon nanotubes (SWC-
NTs) and multi-walled carbon nanotubes (MWCNTs). 
Figure 2 shows the effect of suction parameter s on axial 
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velocity f (�) . It can be seen that the axial velocity increases 
for higher rate of mass transfer parameter s . It is a known 
fact that for high suction, velocity profile escalates, which 
results in reverse flow. The effect of reverse flow is more 
dominating near the upper plate in comparison to the lower 
one. The pressure gradient is the root cause to create the 
reverse flow near the lower plate and because of this fact big 
number of fluid particles move away from the lower plate. 
Figure 3 is sketched for the velocity profile f �(�) versus 
squeezing parameter Sq . This figure shows that for contrac-
tion of disks, i.e., Sq = −1, − 2, − 3 , the velocity profile 
increases for both single-walled carbon nanotubes (SWC-
NTs) and multi-walled carbon nanotubes (MWCNTs), while 
an opposite behavior can be observed for Sq = 1, 2, 3 when 
disks are moving far from each other. The impact of suction 
parameter s for both SWCNTs and MWCNTs are portrayed 
in Figs. 4 and 5. Figure 4 emphasizes that for higher value 
of mass transfer parameter, the velocity profile f �(�) declines 
for MWCNTs. It is observed that whenever suction effect is 
overwhelming, velocity profile decreases. The same behav-
ior can be seen for SWCNTs in Fig. 5. To see the impact of 
nanoparticle volume friction, results are sketched in Fig. 6. 
In the presence of MWCNTs and SWCNTs, it is remarked 
that the velocity reduces in some areas close to the disk for 
growing values of nanoparticle volume friction � but after 
a certain distance from the disk, this profile starts develop-
ing until the far-field boundary condition is asymptotically 
satisfied. This impact can be visualized in Fig. 6. However, 
for incremental values of nanoparticle volume friction � in 
case of squeezing flow, the temperature declines in Fig. 7 for 
both cases. The behavior of dimensionless temperature pro-
file for sundry values of squeezing parameter Sq and thermal 

relaxation parameter � , respectively, for both SWCNTs and 
MWCNTs, is represented in Figs. 8 and 9. In Fig. 8, it is 
examined that the temperature demonstrates reducing behav-
ior within the domain 0 < 𝜂 < 0.3 when Sq = −1,−2,−3, 
i.e., when the disks are contracting. However, it depicts an 
increasing tendency in the region 0.3 < 𝜂 ≤ 1, for higher 
values of squeezing parameter Sq = 1, 2, 3 that is when the 
disks are moving far from each other. To see the effect of 
thermal relaxation parameter � on temperature profile �(�) , 
results are sketched in Fig. 9. It is observed that the higher 
rate of � causes augmentation in the temperature profile �(�) 
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for both SWNTs and MWNTs. To discuss concentration field 
h(�) with respect to homogeneous reaction parameter k1 , het-
erogeneous reaction parameter k2 and the Schmidt number 
Sc , respectively, results are plotted in Figs. 10, 11, and 12 
for both SWCNTs and MWCNTs. Figure 10 indicates that 
for growing values of homogeneous reaction parameter, con-
centration profile h(�) reduces as the reactants are consumed 
during the homogeneous reaction which ultimately declines 
the concentration. The similar result is seen in Fig. 11 for 
heterogeneous reaction parameter. Figure 12 portrays the 
influence of Schmidt number Sc on concentration field h(�) . 

It is witnessed that for higher values of Schmidt number, 
reduction in h(�) is monitored. As Schmidt number is the 
quotient of momentum to mass diffusivity, smaller mass dif-
fusivity relates to stronger Schmidt number which ultimately 
decreases the concentration of the fluid.

To illustrate the skin friction H
2

r2
RerCfr , rate of heat trans-

fer (1 − �t)1∕2Nu and surface concentration h(0) , we plotted 
for both water-based SWCNTs and MWCNTs in Figs. 13, 
14, 15, and 16. The variation of squeezing parameter Sq 
for the skin friction and the Nusselt number against mass 
transfer parameter s are discussed in Figs. 13 and 14. It 
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can be perceived that for the increasing value of squeez-
ing parameter Sq = −1, 0, 1 , the skin friction coefficient 
reduces. While for the rate of heat transfer, an opposite 
trend is observed. From Figs. 15 and 16, the variation of 
thermal relaxation parameter � against squeezing parameter 
Sq is sketched in the presence and absence of nanoparticle 
concentration �. It is observed that for increasing value of 
� , the rate of heat transfer for MWCNTs also improves as 
depicted in Fig. 15. For SWCNTs, similar results can be 
seen for the rate of heat transfer (see Fig. 16). For the sur-
face concentration h(0) , the effects of homogeneous reaction 

parameter k1 and heterogeneous reaction parameter k2 are 
shown in Figs. 17 and 18. It is perceived that with the incre-
ment of k1 = 0.3, 0.5, 0.7 with respect to k2 , h(0) reduces 
in Fig. 17 for both cases. Moreover, for the heterogeneous 
reaction parameter k2 , the surface concentration decreases 
against k1 (Fig. 18).

Table 2 characterizes the comparison of skin friction 
coefficient with Haq et al. (2016) for the varied values of Sq 
and M in the absence of suction and solid volume fraction 
of nanoparticles. An excellent concurrence is achieved in 
this regard. Hence, trustworthy results are being presented.
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Final remarks

Throughout this study, squeezing nano-liquid flow compris-
ing CNTs (SWNTs and MWNTs) with Cattaneo–Christov 
heat flux is examined numerically. Additional impacts of 
MHD and homogenous–heterogeneous reactions are also 
taken into account. Results for both SWNTs and MWNTs 
are constructed. Prominent impacts of arising parameters for 

both SWNTs and MWNTs versus involved distributions are 
illustrated graphically and debated accordingly. Concluding 
remarks for the whole analysis are presented as under:

• Skin friction and Nusselt number exhibit opposite trend 
for squeezing parameter Sq for both

s
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water-based SWNTs, and MWNTs.

• For both SWNTs and MWNTs, velocity distribution 
increases versus mass transfer parameter s.

• The concentration profile declines for both homogenous–
heterogeneous reactions in case of SWNTs and MWNTs.

• The temperature profile shows opposite behavior for 
nanoparticle volume friction � and thermal relaxation 
parameter �.
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