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Abstract
In current attempt, nanoparticle Electrohydrodynamic transportation has been modeled numerically via control volume

based finite element method. Mixture of Fe3O4 and Ethylene glycol is elected. Impact of radiation parameter (Rd), voltage

supplied (Du), nanoparticle concentration, Permeability and Reynolds number have been displayed. Results display that

permeability and thermal radiation can improve temperature gradient.

List of symbols
NE Electric field number

FE

! Electric force

u Horizontal velocity

De Diffusion number

SE Lorentz force number

PrE Electric Prandtl number

Greek symbols
u Electric field potential

q Density

/ Volume fraction

r Electric conductivity

l Dynamic viscosity

Subscripts
c Cold

s Solid particles

1 Introduction

To overcome low conduction of working fluid, nanofluid

has been suggested in last years. Mishra and Bhatti (2017)

demonstrated Ohmic heating impact on fluid behavior

considering chemical reaction. Sheikholeslami et al.

(2018a) displayed the nanoparticle migration in permeable

media with Darcy model when the domain is affected by

magnetic force. Sheikholeslami and Bhatti (2017) investi-

gated external force influence on heat transfer behavior of

nanoparticles. Sheikholeslami and Rokni (2018a) displayed

nanoparticle transportation because of Lorentz forces in a

porous annulus. Bhatti et al. (2017) displayed movement of

nanofluid with microorganism because of Lorentz forces.

Sheikholeslami (2018a) displayed an application of FEM

for discharging process of NEPCM. Bhatti et al. (2016)

displayed the migration of titanium nanoparticles in blood

flow with low velocity. Eldabe et al. (2018) illustrated

motion of working fluid over moving sheet. They simulated

the problem in two dimension and considered magnetic

force impact. Bhatti et al. (2017) simulated EMHD
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pumping of viscoelastic fluid considering nonlinear radia-

tion. Sheikholeslami and Bhatti (2017b) displayed the

influence of nanoparticles’ shape on heating characteristics.

Sheikholeslami (2018b) depicted the nanofluid movement

in a porous enclosure with Darcy law. Ramzan et al. (2017)

demonstrated activation energy influence on radiation heat

transfer of nanofluid. They also considered binary chemical

reaction and buoyancy forces impacts. Sheikholeslami

et al. (2018b) utilized Lorentz forces to accelerate dis-

charging process. They simulated porous heat storage.

Sheikholeslami et al. (2018c) depicted the nanofluid exergy

loss through a duct with twisted tape. Challenge of finding

best working fluid was discussed in various papers

(Sheikholeslami et al. 2018d, e, f, g, h, i, j, k, l, m, n, o;

Sheikholeslami 2017e, f, g, 2018c, d, e, f, g, h, i, j, k; Bhatti

and Ali 2016; Bhatti et al. 2017c, d; Eldabe et al. 2018b;

Khan et al. 2018; Sheikholeslami and Ghasemi 2018;

Sheikholeslami and Shehzad 2018a, d; Sheikholeslami and

Rokni 2017a, b, c, d, e, 2018b; Zeeshan et al. 2018;

Sheikholeslami and Shehzad 2018a, b; Besthapu et al.

2017; Sheikholeslami and Seyednezhad 2018; Sheik-

holeslami and Sadoughi 2018; Sheikholeslami and Seyed-

nezhad 2017a, b; Sheikholeslami and Shehzad 2017a;

Sheikholeslami and Sadoughi 2017a; Haque et al. 2013;

Ramzan et al. 2017b; Ramzan et al. 2016; Ellahi et al.

2014; Sheikholeslami and Ellahi 2015a; b; Sheikholeslami

et al. 2015; Sheikholeslami and Rokni 2017c; Sheik-

holeslami 2017a; Sheikholeslami and Shehzad 2017b;

Sheikholeslami and Sadoughi 2017b; Sheikholeslami

2017b, c, d; Sheikholeslami and Zeeshan 2017; Sheik-

holeslami and Vajravelu 2017; Sheikholeslami and She-

hzad 2017; Sheikholeslami and Chamkha 2017; Dianchen

2017, 2018; Ahmed 2017; Ellahi et al. 2016; Abro 2017;

Shahid et al. 2017; Mehmood et al. 2017).

In current text, electric forces influences on nanofluid

treatment in a permeable medium are discussed. CVFEM

was employed to display the impact voltage; Reynolds

number, radiation parameter, and concentration of Fe3O4.

2 Problem explanation

As displayed in Fig. 1, a porous geometry in existence of

external forces was considered. Figure 2 depicts contour

plots of q. Darcy number has impressive impact on q.

3 Formulation and simulation

3.1 Formulation

E
!

can be calculated (Sheikholeslami and Bhatti 2017):

J
!
¼ q V

!
þr E

!
�Drq; ð1Þ

r � J
!
¼ � oq

ot
; ð2Þ

q ¼ r � e E
!
; ð3Þ

E
!
¼ �ru: ð4Þ

Formulation of current problem is (Sheikholeslami and

Bhatti 2017):

lnf ; qCp

� �
nf
and qnf are (Sheikholeslami and Bhatti 2017):

l ¼ A1 þ A2ðDuÞ þ A3ðDuÞ2 þ A4ðDuÞ3;
ðqCpÞnf ¼ /ðqCpÞs þ ð1� /ÞðqCpÞf ;

qnf ¼ qf ð1� /Þ þ qs/;

ð6Þ

knf can estimated as:

knf

kf
¼ ðmþ 1Þkf þ /ðkp � kf Þmþ kp � /ðkf � kpÞ

kp þ mkf � ðkp � kf Þ/þ kf
: ð7Þ

Related parameters are illustrated in Tables 1, 2 and 3

r � V
!
¼ 0;

� tnf
V
!

K
þ tnfr2

V
!
¼ rp

qnf
þ V

!
�r

� �
V
!
þ oV

!

ot

 !

� q E
!

qnf
;

� qCp

� ��1

nf
r2T knf þ

oT

ot
þ V

!
�r

� �
T

� �
þ qCp

� ��1

nf

oqr

oy
¼ J

!
� E
!

qCp

� �
nf

; qr ¼ � oT4

oy

4re
3bR

; T4 ffi 4T3
c T � 3T4

c

� 	

r � J
!
¼ � oq

ot
;�ru ¼ E

!
; q�r � e E

!
¼ 0;

8
>>>>>>>>>>>>><
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Final forms of equations are:

Fig. 1 a Geometry and the

boundary conditions with; b a

sample triangular element and

its corresponding control

volume

r � V~ ¼ 0;

SE

qnf =qf
qE~þ 1

Re

qnf =qf
lnf =lf

r2V~ �rp� 1

ReDa

lnf
lf

qnf
qf

 !�1

V~ ¼ ðV~ � rÞV~þ oV~

ot

 !

V~ � r
� �

hþ oh
ot

� �
¼ knf =kf
� � 1

PrRe
ðqCpÞnf =ðqCpÞf
� ��1

r2hþ EcðJ~ � E~Þ SE
qCp

� �
f

qCp

� �
nf

þ 4

3

knf

kf

� ��1

Rd
o2h
oY2

E~þru ¼ 0;r � J~þ oq

ot
¼ 0; q ¼ r � eE~;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð8Þ
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ð�u; �vÞ ¼ ðu; vÞ
ULid

;u ¼ u� u0

ru
; h ¼ T � T0

rT
;

�p ¼ P

qU2
Lid

�q ¼ q

q0
; �E ¼ E

E0

; �t ¼ tULid

L
;

rT ¼ T1 � T0;ru ¼ u1 � u0; ð�y; �xÞ ¼
ðy; xÞ
L

;

ð9Þ

Stream function and vorticity must be considered:

W ¼ wL
ULid

; v ¼ � ow
ox

;X ¼ x
LULid

;x ¼ ov

ox
� ou

oy
;
ow
oy

¼ u;

ð10Þ

Nuloc and Nuave are:

210Da = 510Da =
R
e=

30
00

R
e=

60
00
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Fig. 2 Electric density distribution injected by the bottom electrode when Du ¼ 10 kV;/ ¼ 0:05;Rd ¼ 0:8

Table 1 Thermo physical properties of Ethylene glycol and

nanoparticles

q (kg/m3) Cp (j/kgk) k (W/m k)

Ethylene glycol 1110 2400 0.26

Fe3O4 5200 670 6

Table 2 The coefficient values of Eq. (6)

Coefficient values / ¼ 0 / ¼ 0.05

A1 1.0603E?001 9.5331

A2 - 2.698E-003 - 3.4119E-003

A3 2.9082E-006 5.5228E-006

A4 - 1.1876E-008 - 4.1344E-008
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Nuloc ¼
knf

kf

� �
1þ 4

3
Rd

knf

kf

� ��1
 !

oH
oX

; ð11Þ

Nuave ¼
1

L

ZL

0

Nuloc dY: ð12Þ

3.2 Macroscopic approach

Sheikholeslami (2018) was the first researcher who utilized

CVFEM for heat transfer problems. This approach has

been generated by combining FEM and FVM with trian-

gular element. In this FORTRAN code, Gauss–Seidel

method was used in last step.

Table 3 The values of shape factor of different shapes of nanoparticles

m

Spherical 3

Platelet 5.7

Cylinder 4.8

Brick 3.7

Table 4 Comparison of Nuave along lid wall for different grid resolution at Rd ¼ 0:8;Re ¼ 6000;Da ¼ 105; Du ¼ 10;/ ¼ 0:05 and Pr ¼ 6:8

51 9 151 61 9 181 71 9 211 81 9 241 91 9 271 101 9 301

7.44512 7.45338 7.45965 7.46148 7.46229 7.46404

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Present work
Moallemi and Jang

X

N
u loc

Fig. 3 a Comparison of the local Nusselt number over the lid wall

between the present results and Moallemi and Jang (1992) at

Re = 500, Ri = 0.4, and Pr = 1; b Comparison of average Nusselt

number between the present results and numerical results by Khanafer

et al. (2003) Gr ¼ 104, / ¼ 0.1 and Pr ¼ 6:8(Cu� water)
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4 Mesh study and code validation

Altering mesh size must not change the results. Thus,

various grids should be checked. As illustrated in Table 4,

a mesh size of 81 9 241 must be suggested. Figure 3

displays verification of written code (Moallemi and Jang

1992; Khanafer et al. 2003).

5 Results and discussion

In current paper, fluid transportation in existence of Cou-

lomb forces is displayed. The permeable cavity is full of

Fe3O4–C2H6O2. Roles of supplied voltage (Du ¼ 0–

10 kV), Darcy number (Da ¼ 102–105), Reynolds number

(Re ¼ 3000–6000), Radiation (Rd ¼ 0–0.8), nanoparticle

concentration (/ ¼ 0–5%) are depicted graphically.

Platelet shape is the best shape in view of heat transfer

as displayed in Table 5. Due to this fact, other results are

presented for this shape. Impacts of Re; Da and Du on

streamlines and isotherm were displayed in Figs. 4, 5, 6

Table 5 Effect of shape of nanoparticles on Nusselt number when

Rd ¼ 0:8;Re ¼ 6000;Du ¼ 10;/ ¼ 0:05

Da

102 105

Spherical 3.2975 7.194161

Brick 3.33883 7.268677

Cylinder 3.400007 7.378166

Platelet 3.446857 7.461483

Streamline Isotherm

D
a=

10
2

D
a=

10
5

-2E-05
-4E-05
-6E-05
-8E-05
-0.0001
-0.00012
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-0.00026
-0.00028
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-0.00032
-0.00034
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-0.00038

0.95
0.9
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0.8
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0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
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-0.0001
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-0.0008
-0.001
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-0.0014
-0.0016
-0.0018

0.95
0.9
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0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Fig. 4 Effect of Darcy number on streamlines and isotherm when Re ¼ 3000;Du ¼ 0kV ;/ ¼ 0:05;Rd ¼ 0:8
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and 7. When lid velocity is low, there is one rotating

vortex. As Darcy number augments, Wmaxj j enhances and

main vortex goes upward. Existence of electric force leads

the primary vortex to be stronger. Isotherms have complex

shape in presence of Coulomb forces. As lid velocity

enhances, thermal plume generates. As Coulomb force

increases, the strength of primary vortex enhances and

stronger thermal plume generates.

Nuave variation respect to active parameters is shown in

Fig. 8. Below formula can be extracted:

Streamline Isotherm
D
a=

10
2

D
a=

10
5

-0.0002
-0.0004
-0.0006
-0.0008
-0.001
-0.0012
-0.0014
-0.0016
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-0.002
-0.0022
-0.0024
-0.0026
-0.0028

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
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-0.001
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-0.014
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-0.016
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-0.022

0.95
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0.75
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0.35
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0.25
0.2
0.15
0.1
0.05

Fig. 5 Effect of Darcy number on streamlines and isotherm when Re ¼ 3000;Du ¼ 10 kV;/ ¼ 0:05;Rd ¼ 0:8
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Nuave ¼� 3:48þ 0:1Duþ 2:1Re� þ 0:12Du logðDaÞ
þ 0:36 logðDaÞ þ 2:6Rd � 0:13DuRe�

� 0:11 logðDaÞRe� � 1:18Re�Rd

þ 1:06 logðDaÞRd þ 0:33RdDuþ 0:034Du2

� 0:015 logðDaÞð Þ2þ1:03Rd2 � 0:15ðRe�Þ2;
ð13Þ

where Re� ¼ 0:001Re. When SE is not zero, Nu reduces

with augment of Re. Electric field makes convection to

augment. Convection increases with augment of Rd;Da.

Streamline Isotherm
D
a=

10
2

D
a=

10
5
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Fig. 6 Effect of Darcy number on streamlines and isotherm when Re ¼ 6000;Du ¼ 0 kV;/ ¼ 0:05;Rd ¼ 0:8
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Streamline Isotherm
D
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Fig. 7 Effect of Darcy number on streamlines and isotherm when Re ¼ 6000;Du ¼ 10 kV;/ ¼ 0:05;Rd ¼ 0:8
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Fig. 8 Effects of Da; Du;Rd and Re on average Nusselt number
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Fig. 8 continued
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6 Conclusions

In this attempt, nanoparticles transportation due to radia-

tion and forced convection with supplied voltage is simu-

lated. A new numerical comparison indicates the

correctness of present technique. Contours were illustrated

for various variables. Results display that Coulomb forces

makes to generate thermal plume. Convection rises with

considering radiation.
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