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Abstract
This exploration studies a new mathematical model that highlights the impact of homogeneous–heterogeneous reactions on

the flow of three-dimensional Oldroyd-B fluid past a bidirectional stretched surface. Here, homogeneous reaction is

described by cubic autocatalysis and heterogeneous reaction is indicated by first-order process. Additional impacts of

nonlinear thermal radiation and variable thermal conductivity are also taken into account. Flow analysis is materialized in

attendance of magnetohydrodynamic, heat generation/absorption and free convection. Convective heat boundary condition

is also engaged in the present problem. Homotopy analysis method is betrothed to elucidate the nonlinear system of partial

differential equations. A comparison to a previously done study is also added to substantiate existing results; hence,

dependable results are being exhibited. Graphs of important parameters versus all distributions are also given to elucidate

their physical aspects. It is reported that temperature profile is an increasing function of Biot number. It is further noted that

impact of strength of homogeneous and heterogeneous reactions on concentration profile are conflicting.

Keywords Homogenous–heterogeneous reactions � Variable thermal conductivity � Nonlinear thermal radiation �
Heat generation/absorption � MHD

List of symbols
A, B Chemical species

a0; a; b Dimensional constant

c, d Stretching ratio constants

B0 Magnetic field

Cp Specific heat

DA Diffusion coefficient

DB Diffusion coefficient

f 0; g0 Dimensionless velocities

Grx Local Grashof number

hf Heat transfer coefficient

kh Thermal conductivity

kc; ks Rate constants

kw Free thermal conductivity

k1 Free stream conductivity

M Magnetic parameter

Nux Nusselt number

Pr Prandtl number

Q Heat generation parameter

Q� Heat generation/absorption coeff

qr Radiative heat flux

qw Surface heat flux

Rd Thermal radiation parameter

Rex Reynolds number

S Deborah number

Sc Schmidt number

T Temperature of fluid

Tw Wall temperature

T1 Ambient temperature
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(u, v, w) Velocity components

UwðxÞ Stretching velocity along x-axis

Vw yð Þ Stretching velocity along y-axis

x; y; zð Þ Coordinate axis

a Variable thermal diffusivity

b Solutal expansion coefficient

b1 Relaxation Deborah number

b2 Retardation Deborah number

c1 Strength of homogeneous reaction

c2 Strength of heterogeneous reaction

d Biot number

r Electrical conductivity

q Density of fluid

k Stretching rate ratio

k1 Fluid relaxation time

k2 Fluid retardation time

k3 Thermal relaxation time

m Kinematic viscosity

h Dimensionless temperature

hw Temperature ratio parameter

g Similarity variable

/ Dimensionless concentration

f Diffusion coefficient ratio

� Thermal conductivity parameter

1 Introduction

Non-Newtonian fluids have diverse engineering and indus-

trial applications like paper production, biomechanics, oil

drilling and plastic production. Many examples of non-

Newtonian fluid may be quoted like applesauce, suspension

and colloidal solutions, tomato ketchup, sugar solution,

exotic lubricants, condensed milk, soaps, cosmetic products

and clay coatings. No single constitutive relation can exhibit

varied physical structures of these fluids. In general, non-

Newtonian fluids [1–10] are categorized into three leading

groups: the integral type; the differential type; and the rate

type. A good number of attempts in case of differential type

fluids can be quoted because mathematical modeling of such

fluids is much simpler in comparison with rate type fluids.

Differential type fluids describe shear stress in the form of

velocity components. However, very few attempts may be

found in the recent literature’s survey discussing rate type

fluids. Maxwell fluid is a rate type fluid that only provides

information about relaxation time but no information

regarding retardation time. Nevertheless, Oldroyd-B fluid

[11] has the ability to provide information about both

relaxation and retardation times. This fluid model shows

viscoelastic physiognomies of dilute polymeric solutions

with normal flow conditions. Some latest attempts discussing

Oldroyd-B fluid flows include a study by Hayat et al. [12].

They examined the impact of homogeneous and

heterogeneous (h–h) reactions on two-dimensional MHD

Oldroyd-B fluid in the presence of Cattaneo–Christov heat

flux model. Then, Shehzad et al. [13] analyzed analytical

solution of 3D Oldroyd-B fluid flow in attendance of Catta-

neo–Christov heat flux. This was followed by an exploration

by Mahanthesh et al. [14] who computed numerical solution

of 3D Oldroyd-B fluid flow with heat generation/absorption

and nonlinear thermal radiation past a surface which is

stretched in a nonlinear way. Afterward, Sandeep and Reddy

[15] analyzed numerically MHD flow of Oldroyd-B fluid

across a horizontal surface in attendance of thermal and

solutal stratification and cross-diffusion. Then, Mustafa [16]

obtained analytical solution of mixed convective Oldroyd-B

fluid with non-Fourier heat flux approach. Recently, Hayat

et al. [17] discussed analytical solution of time-dependent 2D

Oldroyd- B fluid flow past a non-porous stretched surface

with impacts of nonlinear thermal radiation and Joule heat-

ing. Effects of heat generation/absorption with viscous dis-

sipation with zero mass flux at the surface and convective

heat conditions are also considered.

There are several chemical reacting systems which

involve a number of h–h reactions occurring simultane-

ously. Fewer reactions proceed very sluggishly or even not

at all unless a catalyst is present there. Since the h–h

reactions interact in the system, therefore, the rate of pro-

duct formation and reactant species’ consumption varies

with time. These reactions may include crops damage via

freezing, hydrometallurgical industry, fog formation and

dispersion, chemical processing equipment design and

chemical processing equipment design. Recently, great

interest in this thought-provoking idea is seen by

researchers and scientists. Among these, Ramzan et al. [18]

studied numerical solution of 2D magnetohydrodynamic

flow of Williamson fluid near stagnation point in atten-

dance of h–h reactions and Cattaneo–Christov heat flux

with convective conditions at the boundary. Then, Hayat

et al. [19] examined the series solution of the flow of

second-grade fluid past a stretched cylinder in the presence

of h–h reactions, Joule heating and viscous dissipation.

Later, Yasmeen et al. [20] elaborated the flow of ferrofluid

with effects of h–h reactions and magnetic dipole over a

linearly stretching surface. This was followed by a study by

Maria et al. [21] who discussed series solution of Jeffrey

fluid with h–h reactions in attendance of convective

boundary condition and applied magnetic field and many

therein [22–26].

It is noted that most of the literature available on the

subject deals with influence of homogeneous–heteroge-

neous reactions in varied scenarios in two-dimensional

flows. Fewer explorations are also available discussing

impact of h–h reactions in 3D. But no study so far has been

carried out taking into account simultaneous effects of both

homogeneous heterogeneous reactions and nonlinear
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thermal radiation in the three-dimensional Oldroyd-B fluid

flow in the presence of heat generation/absorption. Addi-

tional effects of variable thermal conductivity and mag-

netohydrodynamic with convective boundary condition are

also taken into consideration. This study may be the first in

its own capacity. Homotopy analysis method (HAM)

[27–31] is employed to solve highly nonlinear system of

equations. The behavior of different sundry parameters on

velocity, temperature and concentration fields is high-

lighted with graphical illustrations. Comparison to a pre-

vious study in limiting case is also made to corroborate our

results.

2 Mathematical formulation

We assume 3D flow of MHD Oldroyd-B fluid with

simultaneous effects of h–h reactions and nonlinear ther-

mal radiative heat flux occupying the region z� 0; past a

surface stretched along x and ydirections with velocities

u ¼ ax and v ¼ by, respectively. It is further assumed that

temperature far away from the surface T1 is much smaller

as compared to the temperature at the surface Tw. Along z-

axis, fluid is taken electrically conducting in attendance of

constant magnetic field Bo as shown in Fig. 1. Because of

our supposition of small Reynolds number, induced mag-

netic field is overlooked. A nonlinear thermal diffusivity

and the effect of heat generation absorption are considered

during the formulation of energy equation. Modified

Fourier’s law known as Cattaneo–Christov heat flux model

is used to see the behavior of thermal relaxation time

during non-Newtonian fluid flow. It is further assumed that

the temperature of the bidirectional stretching sheet is

maintained constant by considering the convective

boundary condition. An investigation of two chemical

species A and B with h–h reactions is performed. For cubic

autocatalysis, the homogeneous reaction is given by [8]

Aþ 2B ! 3B; rate ¼ kcab
2: ð1Þ

However, on the catalyst surface there is only heteroge-

neous reaction represented by:

A ! B; rate ¼ ksa; ð2Þ

where kc; ks and a, b are rate constants and concentrations

of the chemical species A and B, respectively. The con-

stitutive equations of Oldroyd-B fluid (incompressible)

model are appended by

divV ¼ 0; ð3Þ

q
dV

dt
¼ divT: ð4Þ

Here, extra stress tensor S and the Cauchy stress tensor T

are defined as

T ¼� pIþ S; ð5Þ

S ¼k1

DS

Dt
¼ l A1 þ k2

DA1

Dt

� �
; ð6Þ

with D / Dt is the covariant differentiation and fluid

relaxation and retardation time is represented by k1 and k2,

respectively. The first Rivlin–Ericksen tensor A1 is defined

as

A1 ¼ gradVþ gradVð Þ0; ð7Þ

where 0 specifies the matrix transpose and the velocity field

V is represented by

V ¼ u x; y; zð Þ; v x; y; zð Þ;w x; y; zð Þ½ �; ð8Þ

The derivative D / Dt is [32] given by

Fig. 1 Geometry of the problem
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Dai

Dt
¼ oai

ot
þ urai;r � ui;rar: ð9Þ

the energy and the species equations in the vector form are

defined as

qCp V :rTð Þ ¼ r:q�rqr þ Q� T � T1ð Þ ð10Þ

with q is heat flux and is defined by the Cattaneo–Christov

model as

qþ k3

oq

ot
þ V :rq� q:rV þ r:Vð Þq

� �
¼ r kTð Þ ð11Þ

The species concentration equations in the vector form are

defined as

V :ra ¼ D2
Ara� kcab

2 ð12Þ

V :rb ¼ D2
Brbþ kcab

2 ð13Þ

Following the instructions given in [32] and then adopting

the boundary layer postulations [33], we have [14, 34]:

ou

ox
þ ot
oy

þ ow

oz
¼ 0; ð14Þ

u
ou

ox
þ t

ou

oy
þ w

ou

oz

þ k1

u2 o
2u

ox2
þ t2 o

2u

oy2
þ w2 o

2u

oz2
þ

2ut
o2u

oxoy
þ 2tw

o2u

oyoz
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o2u

oxoz

0
BBB@

1
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o2u
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oxoz2
þ t
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þ w

o3u
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� rB2
o

q
uþ k1w
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oz

� �
þ gb T � T1ð Þ;

ð15Þ

u
ot
ox
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ot
oy

þ w
ot
oz
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u2 o
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ox2
þ v2 o
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oy2
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oz2
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ð16Þ
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qCp

oqr

oz
þ Q�

qCP

T � T1ð Þ;

ð17Þ

u
oa

ox
þ v

oa

oy
þ w

oa

oz
¼ DA

o2a

oz2
� kcab

2; ð18Þ

u
ob

ox
þ v

ob

oy
þ w

ob

ow
¼ DB

o2b

oz2
þ kcab

2; ð19Þ

with u, v and w are the velocities along x-, y- and

z� axes, respectively. Here, m; r;B0; T ;Cp; q;DA;DB; k3; a
and k1 denote kinematic viscosity, electrical conductivity,

uniform magnetic field, temperature, specific heat, fluid

density, diffusion coefficients, thermal relaxation time,

variable thermal conductivity and retardation time,

respectively. Equations (10–15) are supported by the

boundary conditions given below

u ¼ cx; t ¼ dy;w ¼ 0; �kh
oT

oz
¼ hf Tw � Tð Þ;

DA

oa

oz
¼ ksa; DB

ob

oz
¼ �ksa; at z ¼ 0;

u ! 0; t ! 0; a ! ao; b ! 0; T ! T1 as z ! 1;

9>>>>>=
>>>>>;
ð20Þ

where hf and kh are heat transfer coefficient and thermal

conductivity with a, b and a0 are positive-dimensional

constants. Using the following transformations [35]

u ¼ UwðxÞ ¼ cxf 0 gð Þ; t ¼ VwðyÞ ¼ cyg0 gð Þ;w ¼

�
ffiffiffiffiffi
cm

p
f gð Þ þ g gð Þð Þ;

h gð Þ ¼ T � T1
Tw � T1

; g ¼
ffiffiffi
c

m

r
z; b ¼ a0h gð Þ; a ¼ a0/ gð Þ:

9>>>>=
>>>>;
ð21Þ

The variable thermal conductivity [35] is given by � ¼
kw�k1
k1

with k1 and kw are the fluid-free stream conductivity

and the thermal conductivity at wall, respectively, also in

Eq. T ¼ T1 hw � 1ð Þh gð Þ þ 1ð Þ; with hw ¼ Tw

T1
: Using

above transformations, requirement of Eq. (10) is fulfilled

spontaneously, nevertheless, Eqs. (11–16) take the form
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f 000 þ M2b1 þ 1
� �

f þ gð Þf 00 � f 02 �M2f 0

þ b1 2 f þ gð Þf 0f 00 � f þ gð Þ2
f 000

	 

þ

b2 f 00 þ g00ð Þf 00 � f þ gð Þf 0000ð Þ þ Grxh ¼ 0;

ð22Þ

g000 þ M2b1 þ 1
� �

f þ gð Þg00 � g02 �M2g0

þ b1 2 f þ gð Þg0g00 � f þ gð Þ2
g000

	 

þ

b2 f 00 þ g00ð Þg00 � f þ gð Þg0000ð Þ ¼ 0;

ð23Þ

1 þ �hð Þh00 þ �h02 þ Pr f þ gð Þh0

� PrS f þ gð Þ2h00 þ f þ gð Þ f 0 þ g0ð Þh0
	 


þ PrQhþ 4

3
Rd hw � 1ð Þhþ 1ð Þ3h00

þ 4Rd hw � 1ð Þ hw � 1ð Þhþ 1ð Þ2h02 ¼ 0;

ð24Þ

/00 þ Sc f þ gð Þ/0 � Scc1/h
2 ¼ 0; ð25Þ

fh00 þ Sc f þ gð Þh0 þ Scc1/h
2 ¼ 0; ð26Þ

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1;gð0Þ ¼ 0;g0ð0Þ ¼ k;/0 0ð Þ ¼ c2/ 0ð Þ;

h0 0ð Þ ¼ �d 1� h 0ð Þð Þ; fh0 0ð Þ ¼ �c2/ 0ð Þ;

f 0ð1Þ ! 0; f 00ð1Þ ! 0;g0 1ð Þ ! 0;g00 1ð Þ ! 0;

/ 1ð Þ! 1; h 1ð Þ! 0;h 1ð Þ! 0;

9>>>>>=
>>>>>;

ð27Þ

where Pr;Grx;M;hw; �;d;Q;b1 and b2;Sc;Rd;k; c1

and c2; f and S are the Prandtl number, local Grashof

number, magnetic field strength, temperature ratio param-

eter, thermal conductivity parameter, Biot number, heat

generation/absorption parameter, Deborah numbers in

terms of relaxation and retardation time, Schmidt number,

thermal radiation parameter, ratio of stretching rate, mea-

sure of strength of homogenous and heterogeneous reac-

tions, ratio of diffusion coefficient and Deborah number

w.r.t relaxation time of heat flux. The values of these

parameters are given below:

Pr ¼ lCp

k
; M2 ¼ rB2

o

qc
; d ¼ hf

k

ffiffiffi
m
c

r
; b1 ¼ k1a; b2 ¼ k2a; hw ¼ Tw

T1
;

Rd ¼ 4r�T3
1

kk�
;Rex ¼

uwx

m
;Q ¼ Q�

cqCP

;Grx ¼
gb Tw � T1ð Þ

c2x
;

Sc ¼ m
DA

; k ¼ d

c
; c1 ¼ kca

2
0

c
; c2 ¼ k

DA

ffiffiffi
m
c

r
; f ¼ DB

DA

; S ¼ k3a:

9>>>>>>>>>=
>>>>>>>>>;
ð28Þ

The result that DA and DB are same, i.e., f ¼ 1 is because

of our supposition that diffusion coefficients related to

chemical species A and B are having the same size. That is

why we have

/ gð Þ þ h gð Þ ¼ 1: ð29Þ

Now, Eqs. (21) and (22) yield

/00 þ Sc f þ gð Þ/0 � Scc1/ 1 � /ð Þ2¼ 0; ð30Þ

with boundary conditions

/0ð0Þ ¼ c2/ð0Þ; /ð1Þ ¼ 1: ð31Þ

The local Nusselt number in dimensional form is given by

Nux ¼
xqw

kðTw � T1Þ ; ð32Þ

where

qw ¼ �k
oT

oz

� �
þ qr

����
z¼0

: ð33Þ

Dimensionless form of Nusselt number is

Nu
x
Re�1=2

x ¼ � 1 þ 4

3
Rd hw � 1ð Þh 0ð Þ þ 1ð Þ3

� �
h0 0ð Þ:

ð34Þ

3 Homotopic solutions

There are many numerical and analytical techniques which

can be used to solve the system of Eqs. (22–26). Among

these, the most commons are finite difference method [36]

shooting method [37, 38] Fehlberg–Runge–Kutta integra-

tion [39] Successive linearization method [40]. The choice

of Homotopy analysis method (HAM) is because of its

edge on the other contemporary techniques. The HAM is a

powerful analytical method, suggested by Liao [41] in

1992, has following advantages in comparison with the

other techniques;

• It is independent of the choice of small or large

parameter.

• The convergence in case of HAM is guaranteed.

• An ample choice to select the initial guess estimates

and the respective operators.

The preliminary guess estimates f0; g0; h0;/0ð Þ and linear

operators Lf ;Lg;Lh;L/

� �
required for Homotopy analysis

method are defined as:

f0 gð Þ ¼ 1 � exp �gð Þð Þ; g0 gð Þ ¼ k 1 � exp �gð Þð Þ;

h0 gð Þ ¼ d exp �gð Þ
1 þ d

;/0 gð Þ ¼ 1 � 1

2
exp �c2gð Þ;

9>=
>;

ð35Þ

and
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Lf gð Þ ¼ d3f

dg3
� df

dg
; Lg gð Þ ¼ d3g

dg3
� dg

dg
; Lh gð Þ ¼ d2h

dg2

� h;L/ gð Þ ¼ d2/
dg2

� /:

ð36Þ

with the following properties

Lf C1 þ C2 expðgÞ þ C3 expð�gÞ½ � ¼ 0;

Lg C4 þ C5 expðgÞ þ C6 expð�gÞ½ � ¼ 0;

L/ C7 expðgÞ þ C8 expð�gÞ½ � ¼ 0;

Lh C9 expðgÞ þ C10 expð�gÞ½ � ¼ 0;

9>>>>>=
>>>>>;

ð37Þ

where Ci i ¼ 1 � 10ð Þ, the arbitrary constants. The values

of these constants using given boundary conditions are

C2 ¼ C5 ¼ C7 ¼ C9 ¼ 0; C3 ¼ ofHm gð Þ
og

����
g¼0

;

C1 ¼ �C3 � fHm 0ð Þ C6 ¼ ogHm gð Þ
og

����
g¼0

;

C4 ¼ �C6 � gHm 0ð Þ C8 ¼ 1

1 þ d
oh�m gð Þ
og

����
g¼0

�dh�m 0ð Þ
 !

;

C10 ¼ 1

1 þ c2

o/�
m gð Þ
og

����
g¼0

�c2/
�
m 0ð Þ

 !
:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð38Þ

3.1 Convergence analysis

To determine the region of convergence for series solu-

tions, the importance of auxiliary parameters ðh�f ; h�g;
h�h; h�/Þ cannot be denied. In Fig. 2, illustration for h��
curves is presented to identify the same region. Tolerable

ranges of parameters h�f ; h�g; h�h and h�/ are �1:7� h�f �
�0:5; �1:6� h�g � � 0:4;�1:6� h�h � � 0:4 and �2:0�
h�/ � � 0:4, respectively. The values of these parameters

are in complete alignment to those numerical values found

in Table 1.

Fig. 2 �h for the function f ; g; h;/

Table 1 Convergence table for varied values of approximations when

b1 ¼ 0:2; b2 ¼ 0:2; M ¼ 0:4; � ¼ 0:3; k ¼ 0:3; d ¼ 0:3; Pr ¼ 2:0;
Rd ¼ 0:3; Q ¼ 0:2; W ¼ 0:1; hw ¼ 1:3; S ¼ 0:2; c1 ¼ 0:4; c2 ¼ 0:6;
Sc ¼ 0:7

Order of approximations � f 00ð0Þ � g00ð0Þ � h0ð0Þ /0 0ð Þ

1 1.02224 0.25176 0.21056 0.28022

5 1.04802 0.25126 0.19517 0.26174

10 1.05302 0.25302 0.19537 0.25745

15 1.05523 0.25377 0.19769 0.25618

20 1.05661 0.25413 0.19973 0.25570

25 1.05755 0.25432 0.20122 0.25551

30 1.05783 0.25438 0.20168 0.25548

35 1.05792 0.25441 0.20173 0.25543

40 1.05792 0.25441 0.20174 0.25543

Table 2 Local Nusselt number � h0 0ð Þ in the absence of homoge-

neous heterogeneous reactions, variable thermal conductivity, mag-

netohydrodynamic, heat generation and nonlinear thermal radiation

when compared with Hayat et al. [34] for b ¼ 0:5

b1 b2 Pr d [34] Present

0.0 0.4 1.0 0.8 0.39658 0.39658

0.5 0.4 1.0 0.8 0.38228 0.38228

1.0 0.4 1.0 0.8 0.36997 0.36997

0.4 0.0 1.0 0.8 0.36761 0.36761

0.4 0.5 1.0 0.8 0.38793 0.38793

0.4 1.0 1.0 0.8 0.39552 0.39552

0.4 0.4 0.5 0.8 0.29221 0.29221

0.4 0.4 0.8 0.8 0.35506 0.35506

0.4 0.4 1.3 0.8 0.41932 0.41932

0.4 0.4 1.0 0.3 0.21365 0.21365

0.4 0.4 1.0 0.6 0.33187 0.33187

0.4 0.4 1.0 1.0 0.42614 0.42614

Fig. 3 Graph of b1 versus f 0ðgÞ
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4 Results and discussion

Figures (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16)

depict the behavior of emerging parameters on velocity,

temperature and concentration distributions. All the com-

putation is carried out for the following ranges of physical

parameters [42] b1ð0:0� b1 � 1:0Þ; b2ð0:0� b2 � 1:0Þ;
Prð � 0:0Pr � 6:0Þ; �ð0:0 � �� 3:0Þ; c1ð0:0 � c1 � 3:0Þ; c2

ð0:1 � c2 � 0:9Þ; dð0:2 � d � 1:0Þ; Mð0:0 �M � 1:5Þ; Rd
ð0:2�Rd� 1:0Þ;Qð0:2�Q� 0:8Þ;Grð0:0�Gr� 3:0Þ; hw
ð1:0� hw � 2:0Þ; Sð0:1� S� 3:0Þ From Fig. 3, it is wit-

nessed that the fluid velocity along the x�axis, i.e., f 0ðgÞ is

a decreasing function of ‘‘Deborah number for relaxation

time’’ b1. Since, relaxation time and Deborah number have

a direct relation. That is why higher relaxation time results

in larger Deborah number which resist the flow of the fluid

and ultimately lowers the fluid velocity distributions. In

comparison, it is observed that both b1 and b2 have an

opposite effect on velocity distribution. b2 namely known

as ‘‘Deborah number for retardation time’’ have an

increasing trend for the velocity profile. As by the defini-

tion of b2, it is directly related with the retardation time

which is defined as the delay response to an applied force

or simply the ‘‘delay of the elasticity.’’ It is observed from

Fig. 4 that velocity of the fluid increases for the higher

values of Deborah number b2. Influence of Deborah

number b1 depending on relaxation time is displayed in

Fig. 5. Temperature has a direct proportion to relaxation

time. That is why higher values of b1 corresponds to an

Fig. 4 Graph of b2 versus f 0ðgÞ

Fig. 5 Graph of b1 versus hðgÞ

Fig. 6 Graph of Pr versus hðgÞ

Fig. 7 Graph of � versus h

Fig. 8 Graph of c1 versus /ðgÞ
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increase in the temperature and hence its thermal boundary

layer thickness.

Figure 6 displays the impact of Prandtl number on the

temperature profile. Thermal diffusivity has a reverse

relation with Prandtl number. Hence, the conduction

reduces for higher value of Pr which causes the reduction

in temperature of the fluid. It is further observed that the

large value of Pr resultantly lower the thermal boundary

layer thickness. Figure 7 shows the impacts of thermal

conductivity parameter � on temperature field. Since, we

know that liquids with higher thermal conductivity have

increased temperature. The same effect may be visualized

in Fig. 7. The reactants are expanded during the homoge-

neous reaction which triggers the reduction in concentra-

tion profile. This impact of strength of homogeneous

reaction c1 on concentration distribution is depicted in

Fig. 9 Graph of c2 versus /ðgÞ

Fig. 10 Graph of d versus hðgÞ

Fig. 11 Graph of M versus f 0ðgÞ

Fig. 12 Graph of Rd versus hðgÞ

Fig. 13 Graph of Q versus hðgÞ

Fig. 14 Graph of Gr versus f 0ðgÞ
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Fig. 8. An opposite behavior in case of increasing values of

strength of heterogeneous reaction c2 on concentration field

is shown in Fig. 9. Here, concentration boosts because of

less diffused particles. The impact of Biot number d on the

thermal boundary layer is elucidated in Fig. 10. As antic-

ipated, the larger surface temperature is observed due to

sturdier convection, instigating the thermal effect pene-

trating deeper into the fluid.

Figure 11 illustrates that velocity distribution function is

diminishing function of magnetic field parameter

M. Lorentz force generated by the applied magnetic

transverse field will oppose the flow of the fluid and

eventually a decrease in the velocity function is observed.

Figure 12 shows the effect of radiation parameter Rd on

temperature distribution. The rise in the fluid temperature

is experimented because of increase in values of Rd.

Actually, more heat transferred to the fluid because of high

values of radiation parameter. Effect of heat generation/

absorption parameter Q on the temperature field is por-

trayed in Fig. 13. It is perceived that temperature distri-

bution is escalating function of Q. Fluid’s temperature is on

rise because of growing values of Q that eventually boosts

the temperature field. Figure 14 illustrates the influence of

Grashof number Gr on velocity profile. As Grashof number

Gr is the quotient of buoyancy to viscous force. Higher

values of Gr mean stronger buoyancy force in comparison

with viscous force. This act accelerates the fluid flow and

enhanced fluid’s velocity is perceived.

In Fig. 15, fluid’s temperature rise is observed versus

increasing values of temperature ratio parameter hw: In

fact, enhanced wall temperature is the core cause to boosts

the temperature of the fluid by increasing values of hw. In

Fig. 16, effects of both Prandtl number Pr and Deborah

number with respect to relaxation time of heat flux S are

presented on Nusselt number. It is witnessed that Nusselt

number escalates with increasing values of Pr. However,
Fig. 15 Graph of hw versus hðgÞ

Fig. 16 Graph of Pr and S versus NuxRe
�1

2
x

Fig. 17 Streamline graph in 2D view

Fig. 18 3D view of streamlines for various values of b2
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an opposite behavior is observed for growing values of S.

Streamlines are basically the path traced out by the fluid

particles within the flow. The graphs of streamlines with

2D and 3D views for various values of b2 are portrayed in

Figs. 17 and 18, respectively. Excellent alignment in both

figures is found. Figure 19 gives a comparison of �h0ð0Þ
for various values of b1 and k by fixing other parameters

for the first three values of Table 2 of [35]. An excellent

agreement is seen in both numerical and graphical results.

5 Conclusions

In this study, simultaneous effects of h–h reactions with

nonlinear radiative heat flux on the flow of 3D Oldroyd

fluid past a linearly bidirectional stretched surface are

pondered. Impacts of magnetohydrodynamic with heat

generation/absorption in the presence of variable thermal

conductivity and free convection are also considered. The

important points highlighted in this investigation are

appended as follows:

• Nusselt number escalates and decreases for growing

values of Prandtl number and Deborah number with

respect to relaxation time of heat flux , respectively.

• Effects of strength of homogeneous–heterogeneous (h–

h) reactions on concentration profile are opposite, as it

decreases for the strength of homogenous reaction and

increases for the heterogeneous reaction.

• Thermal boundary layer escalates with increasing

values of Biot number.

• Larger values of magnetic field parameter cause an

enhancement in velocity field.

• Temperature filed is mounting function of thermal

conductivity and thermal radiation parameters.

• For larger values of local Grashof number, velocity

profile also increases.

• Temperature distribution with its associated thermal

boundary layer thickness is boosted for the larger

values of temperature ratio parameter.
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