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Highlights

• Investigation of visual attributes of handwriting to predict
Parkison’s Disease

• Use of Convolutional Neural Networks for automatic fea-
ture extraction

• Multiple representations of raw data to enhance feature ex-
traction step

• Evaluations on a standard template including drawing and
writing tasks

• Fusion of predictions from multiple tasks to enhance per-
formance
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ABSTRACT

Parkinson’s disease (PD) is a degenerative disorder that progressively affects the central nervous sys-
tem causing muscle rigidity, tremors, slowed movements and impaired balance. Sophisticated diag-
nostic procedures like SPECT scans can detect changes in the brain caused by PD but are only effective
once the disease has advanced considerably. Analysis of subtle variations in handwriting and speech
can serve as potential tools for early prediction of the disease. While traditional techniques mostly
rely on dynamic (kinematic and spatio-temporal) features of handwriting, in this study, we quantita-
tively evaluate the visual attributes in characterization of graphomotor samples of PD patients. For this
purpose, Convolutional Neural Networks are employed to extract discriminating visual features from
multiple representations of various graphomotor samples produced by both control and PD subjects.
The extracted features are then fed to a Support Vector Machine (SVM) classifier. Evaluations are
carried out on a dataset of 72 subjects using early and late fusion techniques and an overall accuracy
of 83% is realized with solely visual information.
Keywords: Handwriting; Parkinson’s Disease; Convolutional Neural Networks; Visual Attributes.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Parkinson’s Disease (PD) is a neurodegenerative disorder
that affects the coordinated movements of a person due to loss
of dopamine producing neurons in substantia nigra (Camp-
enhausen et al., 2005). According to studies (De Lau and
Breteler, 2006; Zhou et al., 2016), it is one of the most preva-
lent neurological diseases after Alzheimer’s (Yan et al., 2008)
with an average onset age of 60. Patients with PD experience
symptoms like posture deformation, rigidity, tremors and
vocal impairments, etc. Traditional diagnostic procedures for
determination of the disease include costly, invasive methods
like SPECT and CT scans, which are usually effective when
the disease has already progressed to a mature stage. Clinical
practitioners therefore, first opt for manual, non-invasive
screening tests like Unified Parkinson’s Disease Rating Scale
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(UPDRS) (Fish, 2011), for early detection of the disease.
While this process is quite established and has been modified
over years of experience, it remains relatively subjective.

With the advent of technology, a number of computerized
systems have been proposed to identify the early symptoms
of Parkinson’s and similar neurological diseases. Some of
these studies analyze voice or speech patterns to observe subtle
but progressive changes which are indicative of PD (Tsanas
et al., 2010), while others monitor muscular movements using
wearable sensors (Niazmand et al., 2011). Over the period
of time, a substantial number of studies (Tucha et al., 2006;
Nackaerts et al., 2013; Drotár et al., 2013a) have suggested
that handwriting, a product of perceptive, cognitive and fine
motor skills (Teulings et al., 1997; Feder and Majnemer, 2007;
Caligiuri and Mohammed, 2012), can also be employed as an
effective tool for early diagnosis of PD.

Currently most of the research (Van Gemmert and Teulings,
2006; Rosenblum and Livneh-Zirinski, 2008; Johnson et al.,
2015; Dirlikov et al., 2017) focuses on analyzing the kine-
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matic and pressure aspects of handwriting to determine PD.
Although these dynamic features are effective, they mostly re-
quire additional temporal information for prediction which can
only be acquired by utilizing special equipment like digitizer
tablets and customized electronic pens (Ünlü et al., 2006). Re-
cent advancements in image analysis and pattern classification
techniques have encouraged researchers to re-investigate static
features from offline samples for improved detection of PD as
well (Zhi et al., 2015). Hypothetically believing in the impor-
tance of visual features, we propose a novel method of assess-
ing their contribution in characterization of PD. We designed
an enhanced system that extracts useful visual features from
handwriting and drawing samples of subjects and applies var-
ious fusion techniques to accurately discriminate between the
control and PD groups. Feature learning based classification
has previously been applied to sensor based handwriting move-
ment signals (Pereira et al., 2016) for detection of symptomatic
signs of PD. Nevertheless, to the best of our knowledge, feature
learning of visual attributes has not been explored to its full po-
tential. The main contributions of the paper are listed in the
following.

• Investigation of the effectiveness of visual attributes of
handwriting by employing machine learning techniques,
in characterizing PD, as opposed to the dynamic online at-
tributes traditionally considered in the literature.

• Use of multiple representations of raw data as input to
learn discriminative patterns from handwriting samples.

• Fusion of results from multiple samples acquired from var-
ious graphomotor (handwritten & hand drawn) tasks for
improved overall classification.

The rest of the paper is organized as follows. Section 2
presents an overview of related works. Section 3 describes the
proposed methodology and experimental setup. Section 4 sum-
marizes the results and their analysis. Finally conclusion and
future directions are discussed in Section 5.

2. Computerized Analysis of Handwriting for Prediction of
Parkinson’s Disease

Computerized analysis of handwriting and hand drawn
shapes has remained an active area of research in the pattern
recognition community for over three decades now. Contrary
to popular applications like handwriting recognition, forensic
investigation and information retrieval etc., automatic analysis
of handwriting and hand drawn shapes for assessment of the
mental health of the subject or for prediction of different neuro-
logical disorders, still requires further exploration.

2.1. Correlation Between Handwriting and Parkinson’s Dis-
ease

A number of studies (Mavrogiorgou et al., 2001; Rémi
et al., 2002; Werner et al., 2006; Yan et al., 2008; Renau-Ferrer
and Remi, 2013; Moetesum et al., 2015) highlight strong
evidences of correlation between handwriting changes and

problems in the nervous system. Neurological disorders like
autism (Fuentes et al., 2009; Kushki et al., 2011), Parkin-
son’s (Teulings et al., 2002) and Alzheimer’s (Slavin et al.,
1999; Schröter et al., 2003) directly impact the graphomotor
skills of individuals suffering from them. In addition to
these, psychotropic medications (Caligiuri and Mohammed,
2012) and aging (Walton, 1997; Rosenblum et al., 2013a),
are also known to influence the handwriting. Visible side
effects of neurological disorders like constructional apraxia,
dysgraphia and micrographia are directly assessed by analyz-
ing handwriting and hand drawn samples of subjects (Figure 1).

Three most established manifestations of Parkinson’s Dis-
ease (PD) that can be captured by handwriting, are ‘Micro-
graphia’, ‘Bradykinesia’ and ‘Tremor’ (Smits et al., 2014). In
micrographia, it becomes difficult for a patient to maintain
the size and alignment of the produced graphomotor impres-
sions (Derkinderen et al., 2002). Bradykinesia or slowness
of movement (either due to motor or cognitive dysfunction),
causes a potential PD patient to complete a graphomotor task
in more time than usually required (Berardelli et al., 2001).
‘Tremors’ are involuntary to and fro movements that can be vi-
sualized by irregular formations of characters and drawings. All
these Parkinsonian conditions can either coexist or are present
independently depending on the type and progression of the
disease. Successful identification of these indicators from the
graphomotor samples of patients can assist in early prediction
and differential diagnosis of PD.

Fig. 1. Handwriting sample of patient with neurological disorder showing
progressive shrinking (Derkinderen et al., 2002)

2.2. Templates for Handwriting Samples

Computerized analysis of ‘Archimedean Spiral Drawing
Test’ (Pullman, 1998) has been widely applied to capture early
signs of various neurological dysfunctions (Hsu et al., 2009;
Michalec et al., 2014) including PD (Saunders-Pullman et al.,
2008; Stanley et al., 2010). Deviations from original template
(like loop tightness, loop width variability, drawing speed and
acceleration, frequency and amplitude of oscillations and spiral
pressure, etc.) are considered as symptomatic indicators of a
disorder (Figure 2). Shape modifications (e.g. meander etc.)
have also been proposed for improved detection (Aly et al.,
2007).

A number of studies (Eichhorn et al., 1996; Teulings et al.,
2002; Rosenblum et al., 2013b; Weber et al., 2014) advocate
the effectiveness of handwriting analysis in detection of PD as
well. Drotár et al. (2013b) presented a template consisting of
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Fig. 2. Archimedean Spiral drawn by (a) Subject with Essential
Tremor (b) Subject with Parkinson’s Disease (c) Healthy subject (Image
Source: (Chung, 2012))

seven different handwriting tasks in addition to conventional
spiral drawing task as shown in Figure 3. The study suggested
that the choice of template has significant impact on the perfor-
mance of the proposed features.

Fig. 3. Template proposed by Drotár et al. (2013b)

2.3. Handwriting Features for Prediction of Parkinson’s Dis-
ease

Various handwriting features have been proposed in the
literature for prediction of PD and other neurological disorders.
Based on their method of acquisition and measurement, these
features can broadly be divided into two categories, Static and
Dynamic features. Static features are usually acquired from
offline samples of handwriting and include spatial attributes
like shape or character dimensions (e.g. skew and slant etc.)
and proportions (e.g. height/width, aspect ratio, etc.), distances,
placement on x-y plane, loops, closures and stroke curvature.
These features have been employed in literature to indicate
signs of micrographia and tremors (Zhi et al., 2015).

On the contrary, dynamic features describe occurrences and
thus require additional temporal information, which can only
be attained from online samples of handwriting. These mostly
include handwriting movements or kinematic measures (like
vertical/horizontal stroke speed and acceleration and trajecto-
ries etc.) (Van Gemmert and Teulings, 2006; Rosenblum and
Livneh-Zirinski, 2008). Popular methods for acquisition of
these features include devices like digitizer tablets and smart
pens (Palmerini et al., 2011). These devices can also capture
in-air/on-surface time intervals which reflect the time a subject

is taking to plan the subsequent writing action; more time
being indicative of reduced cognitive ability (Johnson et al.,
2015; Rosenblum, 2015; Dirlikov et al., 2017).

Pressure or grip on the writing instrument is another use-
ful indicator. With the progression of PD, pen pressure re-
duces (Ünlü et al., 2006). Although variance in pen pressure
can be computed by measuring variance in pixel density from
offline images, yet use of specialized equipment in acquisition
of online samples, has been frequently applied to quantify pen
pressure with more precision.

2.4. Related Works

In a number of related studies (Drotár et al., 2013a,b,
2014), effectiveness of various online features for prediction
of PD is evaluated using the customized template illustrated
in Figure 3. Most of these features included kinematic mea-
surements (like stroke speed, vertical/horizontal acceleration
and jerk etc.), computed from in-air as well as on-surface
time intervals. Classification was carried out by applying
Support Vector Machine (SVM) and maximum accuracy of
85.16% was achieved on a database of 75 subjects (37 control
and 38 PD patients). Authors also suggested that classifi-
cation accuracy depends on the choice of template. Some
tasks are better representative of symptomatic signs than others.

In another study (Rosenblum et al., 2013b), a combination
of various spatio-temporal and pressure measures of on-surface
strokes was computed from online samples of 20 PD and
20 control subjects using a digitizer tablet. By employing
discriminant analysis, a classification rate of 97.5% was
reported. Graça et al. (2014) presented an Android application
that employs gait analysis in addition to handwriting analysis
for prediction of PD. Three classifiers including C4.5, RipperK
and Bayesian Network were employed reporting accuracies of
86.67%, 80.83% and 87.50% respectively on 35 subjects.

In another set of related studies (Pereira et al., 2015, 2016),
authors assessed both offline and signal-based online features
for prediction of PD using various machine learning and
graph based classifiers. A dataset comprising of hand drawn
spiral samples of 55 individuals was used to assess the offline
features. Approximately 75% accuracy was achieved using a
combination of different offline features (i.e. Mean Relative
Tremor and spatial measures) and SVM as classifier. A dataset
consisting of spiral and meander drawing samples of 35 sub-
jects was used to assess performance of signal-based features.
Accuracies achieved on signal-based features ranged from 79%
to 87%. It was, however, observed that the realized results
are sensitive to the choice of classifier used. An interesting
aspect of their work is use of pre-trained Convolutional Neural
Networks (CNNs) (LeCun et al., 1989, 1998) for classification.
Nevertheless, classification was performed on a combination
of signals captured by smart pen and not on visual attributes.

It is observed that due to ease of acquisition and depth of in-
formation present, researchers are becoming more inclined to-
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wards using online dynamic features in their studies. Neverthe-
less, the potential of static visual information cannot be under-
mined (Moetesum et al., 2015; Zhi et al., 2015). It is however
important to comprehend, that the performance of a computer-
ized prediction system is a function of a number of parameters
including acquisition template, discriminating features and the
classification techniques employed.

3. Proposed Methodology and Experimental Setup

As mentioned in the introductory section, the objective of
this study is to evaluate the effectiveness of visual attributes
as discriminators between graphomotor impressions created by
PD and control subjects. To achieve this objective, we propose
a system consisting of multiple networks trained on samples of
various graphomotor tasks. To enrich feature learning, multiple
representations of input data are used to train these networks.
The features learned by different networks are then combined
together (early fusion). Later, predictions from different tasks
are pooled in using a voting scheme (late fusion) to enhance
classification results. The overall system architecture is illus-
trated in Figure 4.

Fig. 4. System Overview

3.1. Dataset

To assess the performance of our proposed methodology,
we used the ‘Parkinson’s Disease Handwriting Database’
(PaHaW), compiled by authors in (Drotár et al., 2014). The
employed dataset comprises of samples collected from 75
subjects (37 PD patients and 38 (age and gender comparable)
control subjects). The mean UPDRS-Part V score for PD
patients is 2.27 ± 0.84. The tasks were based on the template
proposed in (Drotár et al., 2013b) and described in previous
section (Figure 3). However, some subjects did not complete all
tasks in the template, hence their samples were not considered
in our study. A total of 576 samples from 72 (36 PD and

36 control) subjects were used. The idea of capturing more
information from different samples produced by the same
subject was the prime incentive for using PaHaW.

The original PaHaW database does not include images, in-
stead it consists of various online attributes such as the (x,y) co-
ordinates of the pen trajectory as well as the pen status (whether
touching the writing surface or in air). A visual image of
the drawing produced by the subject is generated by plotting
the normalized (x,y) coordinates corresponding to all positions
where the pen is touching the writing surface. The x coordi-
nate is normalized to 0 (by subtracting the minimum value from
every coordinate) while the y coordinate is normalized by sub-
tracting the mean from each value. The sampling frequency in
acquisition of online data is sufficiently high (200Hz), therefore
connecting the coordinates of pen trajectories produces smooth
drawing traces that can be considered very much similar to the
real offline images, an example is illustrated in Figure 5.

Fig. 5. Generated image of (a) Archimedean spiral drawn by Control Sub-
ject, (b) Archimedean spiral drawn by PD Patient

3.2. Convolutional Neural Network (CNN) based Feature Ex-
traction

While domain specific ‘hand-crafted’ feature representations
have been investigated for decades to solve similar classifi-
cation problems, a number of recent studies (Szegedy et al.,
2015; Mollahosseini et al., 2016; Herath et al., 2017), advocate
the superiority of machine learned features over traditional
ones. Deep feature learning approaches like Convolutional
Neural Networks (CNNs), can easily be applied to various
datasets and are known to capture useful information from
diverse samples within a dataset. Pre-trained CNNs can also
be employed off-the-shelf both as feature extractors and as
classifiers (Sharif Razavian et al., 2014). In this study, we have
employed a pre-trained CNN (AlexNet, (Krizhevsky et al.,
2012)) for feature extraction purposes. This technique is known
as ‘Transfer Learning’ and is generally applied in scenarios
where training data is limited, like the case under consideration.

AlexNet architecture comprises of 5 convolution layers,
max-pooling layers, dropout layers, and 3 fully connected
layers. It is trained on 1.2 Million images (with 1000 different
classes) of the ImageNet dataset. The network constructs a
hierarchical representation of input images. Deeper layers
contain higher-level features, constructed using the lower-level
features of earlier layers. Together, the convolutional and
down sampling layers serve as feature extractors while the
fully connected layers represent a trainable classifier similar
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to a standard multi-layer neural network. In transfer learning
that we have chosen, the fully connected layers (performing
classification) are removed and the output of the feature
extractor layers is fed to another classifier. In this study, we
have employed transfer learning by extracting features at f c7
layer.

Although internal representations of CNN layers are hard to
decode, an intuitive guess can be made by visualizing the output
of various layers of the network. Figure 6, shows outputs of a
random activation channel after convolutional layer 3 on two
input images of a spiral drawn by a healthy subject and a PD
patient. It is clearly seen that neurons of the same activation
channel react differently to smoothly drawn spiral edges and
to irregular ones. This gives some indication that the network
is capable of learning discriminating features required for this
problem.

Fig. 6. (a) Archimedean spiral drawn by Control subject, (b) Random im-
age after convolutional layer 3, (c) Channel with maximum neuron activity,
(d) Archimedean spiral drawn by PD patient (e) Random image after con-
volutional layer 3 (f) Same channel with very less neuron activity

3.3. Fusion Techniques for Performance Enhancement

Till now, one of the limiting factors for application of feature
learning for this problem, is the unavailability of large amount
of training data. Nevertheless, literature shows that comple-
menting methods like synthetic data generation (Huang et al.,
2017), data augmentation (Ding et al., 2016) and fusion tech-
niques (Park et al., 2016), can significantly improve the perfor-
mance of a CNN-based system in such scenarios. In this study,
we have used two light weight fusion techniques to enhance
both feature learning and classification.

3.3.1. Early Fusion Technique
One limitation of a CNN is the computation of only linear

characteristics. Hence to enhance feature learning, we propose
to present to the CNN the initial data and the result of the trans-
formation of this initial data through different non linear trans-
forms. Three representations (Figure 7) of the input data are
used to train three independent networks for each of the 8 tasks
performed by a subject. AlexNet computes 4096-dimensional

features from each input image. The features extracted by the
3 networks are then fused into a combined feature vector. The
combined feature vector is then fed to a dedicated classifier (i.e.
SVM) which takes a decision. Same is repeated for each of the
8 tasks. Benefits of using this technique are two-fold. Multiple
representations of the input image not only increase training
data but training smaller networks also reduces computational
overheads. Furthermore, appropriate selection of representation
can help the network in learning better features. Brief details of
the three representations used are given below.

• Raw data (Dr): Conventionally raw images are used as
input data for CNNs as they contain different frequency
components that can be extracted and used for image clas-
sification. Raw images of the 8 tasks, completed by sub-
jects, are used to train the first network.

• Median filter residual data (Dm): The second network is
trained using median filter residuals of the same raw im-
ages. To compute the median filter residual, we applied a
3 × 3 median filter on the raw image and then subtracted
the raw image from the resultant filtered image. The idea
is to preserve high frequency imperfections. Median filter
residual of a raw image (Figure 7-a) is shown in Figure 7-
b.

• Edge data (De): The third network is trained using images
containing only the edge information from the raw images
(Figure 7-c). Edges are known to contain useful informa-
tion in most cases. By applying linear convolution filters
in vertical and horizontal directions, the magnitude of the
gradient is computed in a non linear way. As a result, we
obtained emphasized edge information of the shape and
used it to train our network.

Fig. 7. (a) Raw image, (b) Median filter residual image (Pixel values in-
verted for better visualization), (c) Edge image (Inverted for better visual-
ization)

3.3.2. Late Fusion Technique
The resultant combined feature vector of each task, extracted

by CNNs, is fed to Support Vector Machine (SVM) for classi-
fication. A number of studies (Szarvas et al., 2005; Mori et al.,
2005; Lauer et al., 2007; Niu and Suen, 2012) have investigated
the combination of CNN-SVM, and reported improved classi-
fication results. The objective at hand is to take task level deci-
sions from multiple samples of the same subject. The outputs
of the 8 classifiers in our system form the decision vector d
defined as d = [d1, d2, d3, ...., d8]T , where di ∈ {c1, c2} and ci

denotes label of either of the class (i.e. Healthy/PD). In the next
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step, we applied voting based late fusion. This strategy is suit-
able for a multiple classifier system (Ruta and Gabrys, 2000),
where each classifier gives a single class label as an output, as
considered in our proposed system. In general voting, the out-
put class is decided only when all classifiers produce the same
output. However, for our system, we have employed ‘Majority
Voting’. By varying parameters, we can adjust the weightage
given to number of tasks used for final diagnosis.

4. Analysis of Results

In this section, we evaluate the performance of our proposed
scheme in light of the results of the experiments conducted.

4.1. Evaluation Metrics

The effectiveness of the proposed image representations is
evaluated by computing the system accuracy for each of the
tasks separately and against each representation. Accuracy is
also reported by combining the feature vectors of the three rep-
resentations (early fusion) as well as by combining the predic-
tions of the eight modalities through majority vote (late fusion).
Furthermore, class-wise precision, specificity and sensitivity
values are also reported. For completeness, each of these met-
rics is described briefly in the following in terms of True Pos-
itives (tp), False Positives ( fp), True Negatives (tn) and False
Negatives ( fn).

• Accuracy measures the overall ability of the system
to correctly classify PD patients and healthy subjects:

tp+ fn
tp+tn+ fp+ fn

.

• Sensitivity measures the ability to correctly classify the
PD patients and is calculated as the proportion of True
Positives in the diseased cases and is defined by the ratio

tp

tp+ fn
.

• Specificity measures the ability of the system to correctly
classify the healthy subjects and is defined as tn

tn+ fp

• Precision is the true positive relevance rate and is defined
as tp

tp+ fp
.

The experimental protocol is same as that of (Drotár et al.,
2013a, 2014, 2015, 2016), i.e. 10-fold cross validation; the re-
ported performances hence representing the average of 10 runs.

4.2. Experimental Results

We first present the accuracy of the system against different
representations for each of the tasks in Table 1. The accuracies
represent average accuracies of ten runs. Comparing the
performance of various tasks, it can be observed from Table 1
that Task-1 (‘Archimedean Spiral’) reports highest accuracies
across all three data representations (Accuracy of 57% on
raw images and 65% on median residual and edge images).
Comparing the performance of various image representations,
median residual images (Dm) and edge images (De) outperform
the raw image representations (Dr). Combining the predictions
of all tasks using majority voting results in increasing the

accuracies, the enhancement, however, seems to be marginal.

We also carry out experiments by combining the feature
vectors of different image representations (Dr, Dm and De).
The accuracies realized in these experiments are summarized
in Table 2 where it can be seen that combining different
image representations (early fusion) serves to improve the
accuracies on each of the tasks. The performance of individual
tasks when using combined feature vectors is similar to those
reported in Table 1; Task 1 outperforms all other tasks while
accuracies across different tasks exhibit similar trends in
Table 1 and Table 2. The highest accuracy realized is 83%
when combining feature vectors of all three representations
(early fusion) as well as the predictions of all tasks (late fusion).

System performance in terms of precision, specificity and
sensitivity, on all tasks (late fusion) using the three image rep-
resentations and their combination is summarized in Table 3.
Similar to accuracies, the highest values of these metrics are
realized using a combination of the features from the three rep-
resentations which are comparable to those reported in (Drotár
et al., 2016).

4.3. Statistical Analysis

To statistically compare the effectiveness of different repre-
sentations and tasks, we investigated the following.

• Whether the performance of different representations is
statistically different and whether the performance en-
hancement of combining multiple representations is sta-
tistically significant.

• Whether the difference in performance of different tasks is
statistically significant, which tasks are statistically better
than which other tasks.

For the aforementioned statistical comparisons, we employed
the non-parametric Friedman Test (Friedman, 1940). The test
ranks different scenarios based on their performance, for in-
stance the best performance is ranked 1 and so on. In case of a
tie, the two scenarios are assigned an average rank. The Fried-
man statistic is then computed as a function of the average rank
of all scenarios (Equation 1).

X2
F =

12N
k(k + 1)

(
k∑

j=1

R2
j −

k(k + 1)2

4
) (1)

Where R j is the average rank of scenario j, N is the num-
ber of experiments (i.e. 10 for 10-cross validation in our case)
and k is the number of scenarios (tasks/representations). The
following improved version (Iman and Davenport, 1980) of the
Friedman statistic is generally employed.

FF =
(N − 1)X2

F

N(k − 1) − X2
F

(2)

The null hypothesis of Friedman pre-test assumes that
all scenarios are performance-wise equivalent. If rejected a
post-hoc test is employed to determine the statistical difference
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Table 1. Task-wise System Accuracies for Different Data Representations:(Dr: Raw Image, Dm: Median Residual Image, De: Edge Image)
Data Representation

Task Dr Dm De

1 (Archimedean Spiral) 0.57 ± 0.05 0.65 ± 0.06 0.65 ± 0.09
2 (Letter ‘l’) 0.53 ± 0.09 0.55 ± 0.10 0.57 ± 0.09
3 (Bigram ‘le’) 0.48 ± 0.09 0.51 ± 0.09 0.54 ± 0.08
4 (Word ‘les’) 0.50 ± 0.11 0.57 ± 0.09 0.55 ± 0.07
5 (Word ‘lektorka’) 0.49 ± 0.10 0.58 ± 0.07 0.52 ± 0.11
6 (Word ‘porovnat’) 0.46 ± 0.08 0.49 ± 0.09 0.48 ± 0.08
7 (Word ‘nepopadnout’) 0.54 ± 0.07 0.64 ± 0.07 0.60 ± 0.05
8 (Sentence) 0.48 ± 0.08 0.49 ± 0.09 0.48 ± 0.09
All Tasks 0.58 ± 0.07 0.68 ± 0.07 0.66 ± 0.07

Table 2. Task-wise System Accuracies for Different Combinations of Data Representations: (Dr: Raw Image, Dm: Median Residual Image, De: Edge
Image)

Data Representation
Task Dr + Dm Dr + De Dm + De Dr + Dm + De (Drotár et al., 2016)
1 (Archimedean Spiral) 0.67 ± 0.08 0.70 ± 0.05 0.65 ± 0.08 0.76 ± 0.08 0.62
2 (letter ‘l’) 0.55 ± 0.12 0.52 ± 0.08 0.50 ± 0.09 0.62 ± 0.08 0.72
3 (Bigram ‘le’) 0.51 ± 0.09 0.52 ± 0.11 0.55 ± 0.07 0.57 ± 0.09 0.71
4 (Word ‘les’) 0.54 ± 0.07 0.52 ± 0.08 0.57 ± 0.05 0.60 ± 0.08 0.66
5 (Word ‘lektorka’) 0.54 ± 0.08 0.52 ± 0.11 0.51 ± 0.09 0.60 ± 0.07 0.65
6 (Word ‘porovnat’) 0.50 ± 0.09 0.49 ± 0.09 0.47 ± 0.06 0.51 ± 0.09 0.73
7 (Word ‘nepopadnout’) 0.65 ± 0.06 0.59 ± 0.06 0.63 ± 0.08 0.68 ± 0.07 0.67
8 (Sentence) 0.50 ± 0.09 0.49 ± 0.10 0.49 ± 0.06 0.51 ± 0.08 0.76
All Tasks 0.73 ± 0.08 0.76 ± 0.07 0.79 ± 0.07 0.83 ± 0.09 0.81

between scenarios. In our study, we employed the popular
post-hoc Nemenyi test (Nemenyi, 1963), which performs a
pairwise comparison of scenarios under consideration. The test
computes a Critical Difference (CD) that is used to determine
whether the distance between the average ranks of a pair
of scenarios is statistically significant. For instance if the
difference between the mean ranks of two scenarios is greater
than CD, there exists a significant performance difference
between the two.

Our first investigation was to validate the use of multiple
representation of input data instead of one particular repre-
sentation. The results of Friedman pre-test rejected the null
hypothesis that all representations are equally effective. As a
consequence, Nemenyi test was performed, results of which
are presented in Figure 8. It is evident from the results that
combined representation outperforms all individual represen-
tations thus validating the use of early fusion in the given
scenario. Another interesting observation is that using various
representations instead of raw data representation yields
significantly improved classification results. The performance
difference between the median-residual and edge images,
however, is not significant. Nevertheless, combination of all
three individual representations significantly enhances overall
system performance.

We also carried out statistical investigations to evaluate the
performance of our scheme on various tasks. The statistics
computed by the Friedman pre-test state that performance of
our proposed scheme on individual tasks is significantly differ-
ent. As a result Nemenyi post-hoc test was performed. The
results of Nemenyi post-hoc test are summarized in Figure 9.
It is clearly seen that fusing decisions of all tasks based on
majority voting significantly outperforms individual task-wise
classification (with an exception of Task 1). While consider-
ing effectiveness of individual tasks, it is seen that classifica-

Fig. 8. Nemenyi Pairwise Statistical Test (CD = 0.49) for Performance
Comparison of Individual Representations (Dr: Raw Image, Dm: Median
Residual Image, De: Edge Image) & Combined Representation

tion performance of Task 1 (Archmidean Spiral) and Task 7
(word ‘nepopadnout’) is statistically better than the rest of the
handwriting tasks. Same observations were made while con-
ducting the experiments suggesting that static visual features
can capture effective information from templates which support
on-surface continuity. Task 8 and Task 6 have the least impact
on the performance of the system. Although Tasks (2, 4 & 5)
perform significantly better than Task 8 and Task 6, there is no
significant difference between their own performances.

4.4. Comparative Analysis

We also present an overview of the performance of the
notable studies on handwriting based prediction of PD in
Table 4. Although a meaningful comparison of our system is
possible with the works of Drotár et al. (2013a, 2014, 2015,
2016), results of other studies are also listed to provide an
idea on the current accuracies on this problem across multiple
datasets. It is interesting to note that most of the studies listed
in Table 4 have exploited dynamic features of handwriting
while the visual attributes have not been explored extensively.
Although CNNs have been employed by Pereira et al. (2016),
the features are learned using the signals extracted through
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Table 3. Overall System Performance using Individual & Combined Representations: (Dr: Raw Image, Dm: Median Residual Image, De: Edge Image)
Features

Metric Dr Dm De Combined Drotár et al. (2016)
Precision 0.64 ± 0.13 0.67 ± 0.05 0.75 ± 0.19 0.89 ± 0.12 -
Sensitivity 0.55 ± 0.13 0.69 ± 0.14 0.72 ± 0.14 0.84 ± 0.14 0.87
Specificity 0.64 ± 0.07 0.65 ± 0.13 0.63 ± 0.24 0.82 ± 0.15 0.80

Fig. 9. Nemenyi Pairwise Statistical Test (CD = 1.28) for Performance
Comparison of Tasks

a smart pen with multiple sensors capturing handwriting
dynamics; the visual attributes of writing are not considered.
Comparing the accuracy of 83% reported by the proposed im-
age representations and fusion techniques, with those realized
in Drotár et al. (2013a, 2014, 2015, 2016) on the same dataset1

(and same experimental protocol), it can be observed that
visual features of handwriting report comparable performance
to those realized using dynamic features.

Some interesting observations can be made while compar-
ing performance results of static visual features with other
dynamic features. For instance, in (Drotár et al., 2016), Task
1 (Archimedean Spiral) is reported to be the least effective
amongst the 8 tasks (Table 2). On the contrary, in our proposed
scheme, Task 1 significantly outperforms rest of the tasks.
However, Drotár et al. (2016) attributed the relatively poor
performance of spiral test in their study to the features under
consideration, suggesting that different features can perform
differently on different tasks. Authors did not find significantly
effective kinematic features for both Task 1 (Archimedean
Spiral) and Task 4 (Trigram ‘les’) and consequently relied only
on pressure features, thus resulting in a lower classification
accuracy for both tasks. On the contrary, the experimental as
well as the statistical analysis carried out in our study showed
that visual attributes extracted from both these tasks (especially
Task 1) yield good results. While comparing the performance
of the proposed scheme with other techniques (Pereira et al.,
2015; Graça et al., 2014) considering the Archimedean spiral
only, it is seen that employing only the static visual features
measured from online drawing samples yield comparable
results to schemes which employed a combination of different
dynamic features. Further investigation in using the proposed
features from such drawings (e.g. spiral and meander, etc.) can

1We have used 72 subjects from 75 as data for three subjects was incomplete

be potentially useful for improving accuracy in prediction or
differential diagnosis of Parkinson’s disease.

Contrary to the results reported in (Drotár et al., 2016) where
Task 8 (sentence writing task) performed best classification
(with accuracy 76.5%), the same task performed poorly in our
proposed scheme. Drotár et al. (2016) attributed the perfor-
mance of Task 8 to the in-air time interval which subjects re-
quired to complete the task. Such temporal information can-
not be employed in our proposed scheme, nevertheless tasks
which employed more on-surface time or required continuity
(i.e. Task 1 and Task 7) performed best when visual features
were extracted from them. Such observations strongly indicate
the correlation between features and tasks and support the no-
tion that template selection or design must be kept in view while
designing a decision support system for early prediction and
differential diagnosis of PD or any other neurological disease.

5. Conclusion

This study investigated the potential of visual attributes of
handwriting to predict Parkinson’s disease. While the exist-
ing literature primarily targets kinematic, pressure and spatio-
temporal features, we exploit the static visual attributes of hand-
writing extracted using Convolutional Neural Networks. The
idea is not to deny the effectiveness of the rich online features
but to manifest the fact that visual information in handwriting
can still be effectively employed for this problem. Indeed, com-
bining the two types of features (online and offline) can lead
to some interesting findings. In order to enhance learning, we
used median residual and edge images in addition to raw im-
ages to enrich the feature set (early fusion). Classification is
carried out using Support Vector Machine (SVM) and predic-
tions of different tasks are combined using majority voting (late
fusion). Evaluations on a standard dataset of 72 subjects re-
ported an overall accuracy of 83%. Comparable performance
of the proposed technique with those based on online features
validate the idea that visual attributes extracted from images
of handwriting and hand-drawn shapes can be effectively em-
ployed for this problem. In our further study on this problem,
we intend to combine these offline features with other online
features to evaluate their effect on the prediction accuracies of
PD and other neurological diseases. It would also be interest-
ing to explore other drawing tasks and whether similar results
are acquired on actual offline images. Performance comparison
across multiple datasets (diverse templates) will also make the
subject of our further study.
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Table 4. Performance Comparison of Handwriting based Parkinson Prediction Systems
Study Features Classifier Dataset Template Results
Drotár et al. (2013a) Online in-air movement based Features SVM 75 subjects 8 Task Template 80.09%
Drotár et al. (2013b) Online Kinematic Features SVM 75 subjects 8 Task Template 80%
Rosenblum et al. (2013b) Online Spatio-Temporal & Pressure Features Discriminant Anal-

ysis
40 subjects Signature 97.5%

Drotár et al. (2014) Online in-air & on-surface movement based Fea-
tures

SVM 75 subjects 8 Task Template 85.16%

Graça et al. (2014) Online Spatio-Temporal & Pressure Features
C4.5

35 subjects Archimedean Spiral
86.67%

RipperK 80.83%
Bayesian Network 87.50%

Pereira et al. (2015) Mean Relative Tremor and Spatial Features
Naive Bayes

55 subjects Archimedean Spiral
78.9%

Optimum-Path For-
est

77.1%

SVM 75.8%
Drotár et al. (2015) Online Spatio-Temporal & Kinematic Features,

Entropy, Signal Energy, Empirical Mode Decom-
position

SVM 75 subjects 7 Task Template 88.13%

Drotár et al. (2016) Online Kinematic & Pressure Features
SVM

75 subjects 8 Task Template
81.3%

AdaBoost 78.9%
K-NN 71.7%

Pereira et al. (2016) Pen-based Features
CNN

35 subjects

Archimedean Spiral 80.19%
Meander 87.14%

Optimum-Path Forest
Archimedean Spiral 79.2%
Meander 84.42%

Proposed Technique CNN based Visual Features SVM 72 Subjects 8 Task Template 83%
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