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Abstract: This paper examines the peristaltic flow of Williamson nanofluid in an annulus in 
the presence of induced magnetic field. Present problem is determined under the molds of long 
wavelength and low Reynolds number approximation. This theoretical problem can be 
considered as a mathematical illustration to the movement of fluids in the presence of an 
endoscope or catheter tube. The inner cylinder is rigid, whereas the outward cylinder proceeds a 
sinusoidal wave moving down its walls. The analytical solution is obtained by using Homotopy 
perturbation method. Mathematica numerical simulations are adopted to calculate frictional 
forces and pressure rise. Behavior of various physical parameters is presented through graphs. It 
is found that induced magnetic field and current density enhances by increasing value of 
magnetic Reynolds number. It is also found that temperature profile upturns with an upturn in 
Brownian motion and thermophoresis parameter. 

Keywords: Peristaltic flow,  heat transfer, induced magnetic field,  Williamson nanofluid 
model, annulus, Homotopy perturbation method. 

Introduction 
Peristaltic motion of different fluids has attained a special position because of its wide 
applications such as the swallowing of food through the esophagus, sanitary fluids, corrosive 
fluids, locomotion of some warms and fluids in lymphatic vessels, etc. After the first analysis 
made by Latham ]1[ , a lot of efforts have been made to study the peristaltic flow considering 
Newtonian as well as non-Newtonian fluids ]162[  . 
Now a days Nanofluid science has fascinated devotion of many investigators because such fluids 
enhance thermal conductivity of the base fluid. Nanofluid firstly presented by Choi [17] that was 
defined nanoparticles suspensions into base fluids, including small particles of length scale less 
than 100nm. These particles are generally a metal or metal oxide, increase conduction and 
convection coefficients, letting for more heat transfer out of the coolant. A comprehensive 
analysis of nanofluids was deliberated by Buongiorno ]18[ . The problem of boiling nanofluids 
on horizontal narrow tubes was visualized by Das et al. ]19[ . Nadeem et al. [20] examined 
nanoparticles analysis on peristaltic flow of Prandtl fluid model in the presence of an endoscopic 
tube. Kuznetsov and Nield [21] reported nanofluid past a rigid flat plate for natural convective 
boundary layer flow. Khan and Pop [22] analyzed two-dimensional boundary layer flow of 
nanofluid over an impermeable stretching sheet. Heat transfer improvement by consuming 
nanofluids in forced convection streams have been discussed by Marga et al. [23]. Rana and 
Bhargava [24] stretched the work of Khan and Pop for nonlinearly stretching sheet. The 
inspiration of endoscope tube on the peristaltic passage of nanofluid has been examined by 
Akbar and Nadeem [25]. Ellahi et al. [26] debated series solutions of non-Newtonian nanofluids 
for Vogel's and Reynolds' viscosity model by smearing homotopy analysis method. 
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Induced magnetic field concept in peristalsis had been discovered by some of the researchers. 
Mekheimer [27] deliberated the consequence of an induced magnetic field on the peristaltic flow  
of a non-Newtonian fluid. Induced magnetic field impact on peristaltic flow in an annulus has 
been inspected by Abd elmaboud [28]. He discussed that his theoretical model may be 
considered as mathematical illustration to the movement of conductive physiological fluids in the 
presence of an endoscopic tube. Nadeem and Akram ]29[  presented the induced magnetic field 
effect on peristaltic flow of couple stress fluid in an asymmetric channel. Reddy et al. ]30[  
examined the problem of peristaltic flow in an inclined symmetric channel filled with porous 
material under the long wavelength and low Reynolds number assumptions. They used 
perturbation expansion to analyze the problem and considering small Weissenberg number. 
Mekheimer et al. [31] discussed induced magnetic field impact on peristaltic flow of a magneto-
micropolar fluid. 
The Homotopy perturbation method, first proposed by Ji-Huan He [32, 33] for resolving 
differential and integral equations, linear and nonlinear, has been the topic of wide analytical and 
numerical studies. The method, which is a connection of the traditional perturbation method and 
homotopy in topology, distorts continuously to a simple problem which is easily solved. This 
method, which does not require a small parameter in an equation, has a important advantage in 
that delivers an analytical approximate solution to a extensive variety of linear and nonlinear 
problems in applied sciences. For more aspects see the Refs. [34-37]. 
The current problem is undertaken to study the effects of induced magnetic on the peristaltic 
flow of Williamson nanofluid in an annulus. Analytical solutions are accepted out with the aid of 
homotopy perturbation technique for velocity, temperature, nanoparticle concentration, axial 
induced magnetic field and for current density distribution. Graphical consequences for pressure 
rise, pressure gradient, friction forces, current density distribution, and the axial induced 
magnetic field has been designed for different values of the physical parameters arriving in the 
problem. 

Model of the problem 
 

Fig. a, Geometry of the problem  



 
Assume the hydro-magnetic flow of a nano Williamson, incompressible and electrically 
conducting fluid through the gap between two vertical cylinders. The inner cylinder is rigid 
retained at a temperature 0T , while the outer cylinder has a sinusoidal wave traveling down its 

walls and retained at temperature 1T . The system is stressed by an external radial uniform 

magnetic field of strength 
R

RH 20  which will give grow to an induced magnetic field 
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  and the total magnetic field will be 
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 . The walls of the cylinders are expected to be non-

conductive, and the wall surface geometry are defined as 
,11 aR    

 

),(
2

sin22 tcZbaR 



 

 
where 1a , ,2a  ,  ,b  ,c  is the radius of the inner and outer cylinders, wavelength, wave 
amplitude, and wave speed respectively. Basic equations of hydro-magnetic flow of a 
Williamson nanofluid, avoiding the displacement currents and free charges, are 
Maxwell's equations 
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Continuity and Navier Stokes equations are 
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Combining Eqs. )3(  to ( )5  we obtain induction equation 
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We are using the Buongiorno ]18[  nanofluid model therefore the Nanoparticle temperature and 
concentration equations are shown as 
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where E  is the induced electric field, J  is the electric current density,   is the electrical 
conductivity, e  is the magnetic permeability, 

e 1  denotes the magnetic diffusivity, V  is 

the velocity component, S  gives the Cauchy stress tensor,  C  is the nanoparticle concentration,  

BD  the Brownian diffusion coefficients of mass diffusivity and 
T

D  the thermophoretic diffusion 

coefficient respectively. 
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p

c
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1 
   depicts the ratio of the effective heat capacity in the case of 

nanoparticle material and heat capacity of the fluid. The expression of Cauchy stress tensor is 
defined ]38[  as 
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in which  , ,0  ,  ,  defines extra stress tensor,  zero shear rate viscosity, infinite rate of 

shear viscosity, time constant respectively and   now defined as 
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in which   define second invariant strain tensor. We assume in the Eq. (12) the case for which 

we take 0  and   ‹ 1 thus we can write 
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where  , 0  and   define infinite shear rate viscosity, zero shear rate viscosity and time 

constant respectively. In the fixed coordinate ,(R  ),Z  the flow in the cylinders is unsteady,  it 
converts into steady flow in a wave frame ),( zr  traveling with same speed as the wave travels in 

the Z  directions. The conversions between the wave frames of reference are 
 

. , , , UucWwtcZzRr   
In the wave frame u  and w  denote the velocity mechanisms. The boundary limits are expressed 
as 
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in the above equations 

T
D  the thermophoretic diffusion coefficient and BD  the Brownian 

diffusion coefficients of mass diffusivity. 
Introducing the dimensionless variables 
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We define ,tN  Re,  ,rB  ,rG  ,We  ,bN  ,̂   ‹ ,1  
T

 , ,c  are the thermophoresis parameter,  

Reynolds number, local nanoparticle Grashof number,  local temperature Grashof number,  

Weissenberg number,  Brownian motion parameter, wave number,   is the amplitude ratio, 
coefficient of thermal expansion, coefficient of expansion with nano concentration respectively. 
Using Eqs. )17(  and )19(  into Eqs. )1(  to ),10(  we obtain 
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where 

We note above equations are non-linear,  therefore,  we are involved to solve our problem by the 

suppositions of low Reynolds number and long wavelength,  avoiding the terms of order ̂  and 

greater,  Eqs. )20(  to )27(  take the following form 
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ca
mR 2  are the Strommers number (magnetic force number) and the magnetic 

Reynolds number respectively. Eq. )29(  illustrates that p  is not a function of r. The final 
dimensionless boundary limits for non-conductive cylinders are 
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Analytical solutions 

Homotopy perturbation solution 
Solution of Eq. ( )31  subject to the relevant boundary condition shows that .0rh  (i.e continuity 
of the normal component of the magnetic field across the boundary gives that induced magnetic 
field in the radial direction is zero). Integrating Eq. (31) after replacing 0rh  one finds 
 

.12

r

x
w

r

rR

r

h mz 










 

 
To determine the constant ,1x  we find from Eqs. ( )4  and ( )35  as 
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Since 0J  at 2rr   so .21 rRx m  Now replace 0rh  and eliminate r
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  in Eq. ( )30 . To 

achieve the solution of above equations, we have used homotopy perturbation method. The 
homotopy perturbation technique allows ,39[  ]40  to write Eqs. )30( , ),32(  and )33(  as  
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where mRSM Re2  (Hartmann number), 2MrH  , and the linear operator and the initial 

predicts are selected as 
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Allowing to HPM, we describe  
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With the aid of above equations, Eqs. (37) to (39) after gathering the like powers of j and 
concluding the perturbation outcomes for parameter 1j , the appearance for concentration 
field, temperature and velocity can be printed as 
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The solutions of axial velocity and the axial induced magnetic field can be directly defined as 
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Current density distribution takes the following form 
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in which all ijg  and ija  are shown in appendix. Pressure gradient expression can be written as 
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.
2

1
2

1 2
2









 

iFQ  

The dimensionless expressions for time mean flow rate ,iF  Pressure rise p  and friction forces 

(at the wall) are defined as 
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The relations for velocities, stream function and magnetic force function relation are defined as 
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Making use of Eq. )44(  and )45(  into Eq . ),49(  we get stream function and magnetic force 

function, whereas all the constants are defined in an appendix and constants ,28a  29a  and ,64a  

65a  appears when we solve Ist and 2nd iteration that can be evaluated by using Mathematica. 

Graphical Results 
In this unit axial induced magnetic field, current density distribution, temperature and 
nanoparticle concentration field, pressure rise, inner and outer friction forces, pressure gradient 
and stream lines are discussed. Figures. )1(  to ( )23  is presented for this purpose. Inner and outer 
friction forces and pressure rise p  are calculated numerically. Table 1 is plotted to see the 
validation of the applied homotopy technique. This method is shown that velocity profile 
satisfied Eq. 34 (boundary conditions of the problem) as well as Eq. 30 and the error generated in 
this process can be seen in the last column of Table 1. This technique is exposed a good 
validation for this problem with fixed parameters. Fig. 1, is designed to see the impact of 
velocity profile for Newtonian fluid as well non-Newtonian fluid. It is depicted in this plot, 
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velocity profile near the endoscopic or catheter tube decreases whereas quite opposite behavior is 
depicted near the peristaltic wall. 
The axial induced magnetic field hz  for diverse values of thermophoresis parameter, Brownian 
motion parameter and magnetic Reynolds number are depicted in the Figures. )2(  to )4( . In Fig. 

)2(  and ( )3  it is seen that the axial induced magnetic field zh  drops by swelling the values of 

tN  and upsurges by swelling the values of bN  in the region 46.010.0  r  near the inner 

cylinder or (endoscope tube) but in the region 1743.147.0  r  near outer cylinder quite 
opposite behavior is observed. Fig. 4  shows the impact of mR  on the axial induced magnetic 

field hz . The graphical effect displays the axial induced magnetic field hz  increases by 
increasing magnetic Reynolds number mR . 

Figs. )5(  to ( )8  described current density distribution for diverse values of ,M  ,bN  tN  and mR . 

It is depicted from Fig. 5  to 7  the current density distribution grows in the portion 
,4746.103.1  r  ,92.022.0  r  4746.192.0  r  and decays in the portion ,02.122.0  r  

,4746.1921.0  r  91.022.0  r  with an increase in the values of M , bN  and tN  

respectively. One may observe with an increase in the value of bN  current density distribution 

increases near the inner cylinder, however current density distribution decreases near the inner 
cylinder by increasing values of M  and tN . It is depicted from Fig. )8(  current density 

distribution increases by increasing values of magnetic Reynolds number. Figs. )9(  and )10(  are 

designed to perceive the change of temperature profile for diverse values of tN  and ,bN  here 

temperature profile enhances with the increase of tN  and bN . 

Variation of nanoparticles concentration for various values of tN  (thermophoresis parameter) 

and bN  (Brownian motion parameter) are depicted in the Figs. )11(  and )12( . It is observed that 

nanoparticles concentration falls when the values of tN  are increasing and it enhances when the 

values of bN  upturns. Peristaltic pumping ,0( Q  and ),0p  retrograde pumping ,0( Q  

and )0p  and augmented pumping ,0( Q  and )0p  are defined in the Figs. )12(  to )14( . 

It is clear pressure rise increases by increasing the value of bN  and decreases by increasing 

values of tN  in all three regions as shown in Fig. )13(  and ).14(  It is depicted from Fig. 15  

pressure rise in the retrograde pumping region increases and decreases in the interval 
Q ]1.1,5.1[  , Q ]01.0,1[   respectively, whereas pressure rise decreases with the increase in 
the value of M  in peristaltic and augmented pumping region. Friction forces can be seen in the 
Figs. ( )16   and ( ).17  One may observe inner and outer friction forces have reverse behavior 
related to the pressure rise. 
Pressure gradient defines in which direction and at what rate pressure changes most rapidly. Figs. 

)20()18(   defined the effect of different emerging parameters of our study on the pressure 
gradient. One explains in the wider part of the annulus ]5.0,1.0[z  pressure gradient is 
comparatively small that is the flow can easily pass without imposition of large pressure gradient 
where, in the narrowest part of the annulus ]9.0,51.0[z  a much larger pressure gradient is 
essential to preserve the same flux to pass it, especially for the thinnest position on  75.0z . 
This is in good contract with the physical condition. Also from these figures we can see the 
impact of M , bN  and tN  on the pressure gradient where the height of dzdp /  drops with 



enhanced M  and bN  and increase as tN  increases. 

Trapping is stimulating spectacle of peristaltic wave, which is the expansion of an inside mixing 
bolus of fluid by protected streamlines. This confined bolus improves pushed forward with the 
peristaltic wave. To get the possessions of M , bN  and tN  on the trapping, we have prepared 

Figs. ( )21  to ( )23  . It is noticed from Figs. ,(21 a  ,b  )c  that the trapped bolus remains same 
when the value of M  is 0.3 and 0.4 but, the size of the trapped bolus decreases after that, 
number of the trapped boluses decreases when the value of 1.1M . Figs. ,(22 a  ,b  )c  

represents the effects of  bN  on trapping. One comes to know numbers of bolus decreases while 

bolus become large with greater values of  bN . Figs. ),,(23 cba  discloses that the number of 

trapped bolus remains same, but the magnitude of trapped bolus slightly shrinks with collective 
values of .tN   

Concluding remarks 
This study inspects the nanoparticles properties on the peristaltic flow of Williamson fluid in an 
annulus. The leading points of the phenomenon are given as: 
1. Induced magnetic field and current density enhances by increasing value of magnetic 

Reynolds number. 
2. It is examined temperature profile upsurges with rise in Brownian motion and 

thermophoresis parameter. 
3. Effects of thermophoresis and Brownian motion parameter on nanoparticle concentration is 

opposite 
4. Friction forces (inner and outer) performed by a different manner related to the pressure rise. 
5. Pressure gradient raises as the Hartmann and thermophoresis number increases and lessened 

by increasing value of Brownian motion parameter. 
 
 

                       (Absolute 
Error) 
 

0.97  0.48  1.73  0.2 0.01  0.03 0.89 2.08 0.04 0.02 4.17 0.008508 

0.98    0.003719 

1  0.000262 

0.97  0.49  1.73  0.2  0.01  0.03  0.90  1.9  0.04  0.02  4.17  0.016143 

0.98    0.021178 

1  0.034813 

0.97  0.50  1.73  0.2 0.01  0.03 0.91 1.8 0.04 0.02 4.17 0.000572 

0.98    0.005231 

1  0.020549 

 
 

Table 1, Absolute Error for velocity profile with fixed parameters. 
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Fig. 1, Velocity profile for diverse values of We with fixed parameters are ,22.0  ,83.0tN  

,24.3bN  ,3rG  ,2rB  ,81.0M  ,05.0z  .22.0Q   
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Fig. 2, Axial induced magnetic field versus r  for 13.2bN , ,18.0  ,23.0rG  ,81.0rB  

,21.0z  ,10.0  ,03.0We  ,13.0Q  ,79.0M  .1mR   

Fig. 3 ,  Axial induced magnetic field versus r  for 13.2tN , ,18.0  ,23.0rG  ,81.0rB    



,21.0z  ,10.0  ,03.0We  ,13.0Q  ,79.0M  .1mR   
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Fig. 4 Axial induced magnetic field versus r  for ,18.0  ,23.0rG  ,81.0rB  ,21.0z  

,10.0  ,13.0,03.0  QWe  ,79.0M  13.2bN , .79.0tN  Fig. 5, Current density 

distribution versus r  for ,49.0  ,4.0rB  ,41.0rG  ,22.0  ,21.0z  ,11.0Q  

,13.0mR  ,03.0We  ,79.0bN  .84.0tN   
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Fig. 6, Current density distribution versus r  for 79.0tN , ,49.0  ,4.0rB  ,41.0rG  
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Fig. 8, Current density distribution versus r  for ,49.0  ,4.0rB  ,41.0rG  ,22.0  

,21.0z  ,11.0Q  ,03.0We  ,13.2bN  ,84.0M  .79.0tN  Fig. 9, Temperature profile 

versus r  for ,03.0z  ,12.0  .83.1,59.0  bN   
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Fig. 10, Temperature profile versus r  for ,03.0z  ,12.0  .83.1,59.0  tN  Fig. 11, 

Nanoparticles concentration versus r  for ,26.0z  ,03.0  14.0 , .55.3tN   
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Fig. 12, Nanoparticles concentration versus r  for fixed parameters are ,26.0z  ,03.0  

14.0 , .55.3bN  Fig. 13 ,  Pressure rise versus Q  for fixed parameters are ,02.0  

,12.0rB  ,13.0rG  ,07.0  ,01.0We  ,15.0bN  76.0M . 
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Fig. 14, Pressure rise against Q  for fixed parameters are 76.0M , ,02.0  ,12.0rB  

,13.0rG  ,07.0  ,01.0We  .15.0tN   

Fig. 15 ,  Pressure rise versus Q  for fixed parameters are ,05.0  ,12.0rB  ,13.0rG  



,07.0  ,01.0We  ,02.0bN  .15.0tN   
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Fig. 16, (Inner friction forces) for ,05.0  ,12.0rB  ,13.0rG  ,07.0  ,01.0We  

,02.0bN  .15.0tN   

Fig. 17, (Outer friction forces) for ,05.0  ,12.0rB  ,13.0rG  ,07.0  ,01.0We  

,02.0bN  .15.0tN   
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Fig. (18), Pressure gradient versus z  for fixed parameters are 05.0bN , ,02.0  ,12.0rB  



,13.0rG  ,07.0  ,01.0We  ,6.1M  .03.0Q   

Fig. (19) ,  Pressure gradient versus z  for fixed parameters are 05.0tN , ,02.0  ,12.0rB  

,13.0rG  ,07.0  ,01.0We  ,6.1M  .03.0Q   
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Fig. (20), Pressure gradient against z  for ,02.0  ,12.0rB  ,13.0rG  ,07.0  ,01.0We  

,15.0tN  05.0bN  .03.0Q   
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Fig. (21), Stream lines graphs for diverse values of M, (a, b, c) for 3.0M , ,4.0  1.1 . The other 

parameter are ,31.0  ,79.4rB  ,21.2rG  ,35.0  ,05.0We  ,23.0bN  ,14.5tN  

.13.0Q   
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Fig. (22), Stream lines graphs for diverse values of bN  (a,b,c) for 23.0bN , ,33.1  33.2 . Other 

parameters are ,31.0  ,79.4rB  ,21.2rG  ,35.0  ,05.0We  ,3.0M  14.4tN  . 
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Fig. (23), Stream lines graphs for diverse values of tN  ,(a  ,b  14.3) c , ,14.4  14.5 . The other 

parameter are ,79.4rB  ,21.2rG  ,35.0  ,05.0We  ,3.0M  ,23.0bN  .13.0Q   
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