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Abstract: This paper examines the peristaltic flow of Williamson nanofluid in an annulus in
the presence of induced magnetic field. Present problem is determined under the molds of long
wavelength and low Reynolds number approximation. This theoretical problem can be
considered as a mathematical illustration to the movement of fluids in the presence of an
endoscope or catheter tube. The inner cylinder is rigid, whereas the outward cylinder proceeds a
sinusoidal wave moving down its walls. The analytical solution is obtained by using Homotopy
perturbation method. Mathematica numerical simulations are adopted to calculate frictional
forces and pressure rise. Behavior of various physical parameters is presented through graphs. It
is found that induced magnetic field and current density enhances by increasing value of
magnetic Reynolds number. It is also found that temperature profile upturns with an upturn in
Brownian motion and thermophoresis parameter.

Keywords: Peristaltic flow. heat transfer, induced magnetic field, Williamson nanofluid
model, annulus, Homotopy perturbation method.

Introduction

Peristaltic motion of different fluids has attained a special position because of its wide
applications such as the swallowing of food through the esophagus, sanitary fluids, corrosive
fluids, locomotion of some warms and fluids in lymphatic vessels, etc. After the first analysis
made by Latham [1], a lot of efforts have been made to study the peristaltic flow considering

Newtonian as well as non-Newtonian fluids [2 —16].

Now a days Nanofluid science has fascinated devotion of many investigators because such fluids
enhance thermal conductivity of the base fluid. Nanofluid firstly presented by Choi [17] that was
defined nanoparticles suspensions into base fluids, including small particles of length scale less
than 100nm. These particles are generally a metal or metal oxide, increase conduction and
convection coefficients, letting for more heat transfer out of the coolant. A comprehensive
analysis of nanofluids was deliberated by Buongiorno [18]. The problem of boiling nanofluids

on horizontal narrow tubes was visualized by Das et al. [19]. Nadeem et al. [20] examined

nanoparticles analysis on peristaltic flow of Prandtl fluid model in the presence of an endoscopic
tube. Kuznetsov and Nield [21] reported nanofluid past a rigid flat plate for natural convective
boundary layer flow. Khan and Pop [22] analyzed two-dimensional boundary layer flow of
nanofluid over an impermeable stretching sheet. Heat transfer improvement by consuming
nanofluids in forced convection streams have been discussed by Marga et al. [23]. Rana and
Bhargava [24] stretched the work of Khan and Pop for nonlinearly stretching sheet. The
inspiration of endoscope tube on the peristaltic passage of nanofluid has been examined by
Akbar and Nadeem [25]. Ellahi et al. [26] debated series solutions of non-Newtonian nanofluids
for Vogel's and Reynolds' viscosity model by smearing homotopy analysis method.
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Induced magnetic field concept in peristalsis had been discovered by some of the researchers.
Mekheimer [27] deliberated the consequence of an induced magnetic field on the peristaltic flow
of a non-Newtonian fluid. Induced magnetic field impact on peristaltic flow in an annulus has
been inspected by Abd elmaboud [28]. He discussed that his theoretical model may be
considered as mathematical illustration to the movement of conductive physiological fluids in the
presence of an endoscopic tube. Nadeem and Akram [29] presented the induced magnetic field

effect on peristaltic flow of couple stress fluid in an asymmetric channel. Reddy et al. [30]

examined the problem of peristaltic flow in an inclined symmetric channel filled with porous
material under the long wavelength and low Reynolds number assumptions. They used
perturbation expansion to analyze the problem and considering small Weissenberg number.
Mekheimer et al. [31] discussed induced magnetic field impact on peristaltic flow of a magneto-
micropolar fluid.

The Homotopy perturbation method, first proposed by Ji-Huan He [32, 33] for resolving
differential and integral equations, linear and nonlinear, has been the topic of wide analytical and
numerical studies. The method, which is a connection of the traditional perturbation method and
homotopy in topology, distorts continuously to a simple problem which is easily solved. This
method, which does not require a small parameter in an equation, has a important advantage in
that delivers an analytical approximate solution to a extensive variety of linear and nonlinear
problems in applied sciences. For more aspects see the Refs. [34-37].

The current problem is undertaken to study the effects of induced magnetic on the peristaltic
flow of Williamson nanofluid in an annulus. Analytical solutions are accepted out with the aid of
homotopy perturbation technique for velocity, temperature, nanoparticle concentration, axial
induced magnetic field and for current density distribution. Graphical consequences for pressure
rise, pressure gradient, friction forces, current density distribution, and the axial induced
magnetic field has been designed for different values of the physical parameters arriving in the
problem.

Model of the problem

Fig. a, Geometry of the problem



Assume the hydro-magnetic flow of a nano Williamson, incompressible and electrically
conducting fluid through the gap between two vertical cylinders. The inner cylinder is rigid

retained at a temperature T,, while the outer cylinder has a sinusoidal wave traveling down its
walls and retained at temperature T,. The system is stressed by an external radial uniform
magnetic field of strength % which will give grow to an induced magnetic field
H"(h-(R,Z,1),0,h,(R,Z,1)) and  the  total magnetic  field  will be
H*(h,(R,Z,f)+ ™% 0,h,(R,Z,f)). The walls of the cylinders are expected to be non-
conductive, and the wall surface geometry are defined as

R =a, 1

§2=a2+bsin27ﬂ(z_—cf), 2

where a,, a,, 4, b, c, is the radius of the inner and outer cylinders, wavelength, wave
amplitude, and wave speed respectively. Basic equations of hydro-magnetic flow of a
Williamson nanofluid, avoiding the displacement currents and free charges, are

Maxwell's equations

_ _ 3
VH" =0, V.E" =0,
VxH"=J, whereJ = o{E + 1, (VxH")}, 4
— oH*
VxE" =—- -
He P 5
Continuity and Navier Stokes equations are
o 6
divVv =0,
pf‘:j—\t_/:div§+pff+ye(3xﬁ+), 7
Combining Egs. (3) to (5) we obtain induction equation
aﬁHt_ =Vx{Vxﬁ+}+§V2ﬁ+. 8

We are using the Buongiorno [18] nanofluid model therefore the Nanoparticle temperature and
concentration equations are shown as

_ - o
d—T=LV2T+('DC)p[DBVC.VT +(=)VT.VT], 9
dt  (pc), (pe); T

_ D _
?j_(tz =DyV°C + (TTT)VZT, 10

1



where E* is the induced electric field, J is the electric current density, o is the electrical
conductivity, u, is the magnetic permeability, ¢’ =_- denotes the magnetic diffusivity, V is

the velocity component, S gives the Cauchy stress tensor, C is the nanoparticle concentration,
Dg the Brownian diffusion coefficients of mass diffusivity and D_ the thermophoretic diffusion

(Pe)p
(pe)s

nanoparticle material and heat capacity of the fluid. The expression of Cauchy stress tensor is
defined [38] as

coefficient respectively. 7, =

depicts the ratio of the effective heat capacity in the case of

S=-Pl+T, 11

=7, + (70.7.)A-T7) 1771, 2

inwhich 7, n,, n,, I', defines extra stress tensor, zero shear rate viscosity, infinite rate of

shear viscosity, time constant respectively and ; now defined as

Y= E;%"Yij'in :1{57‘:’

14

where

n =trace(grad A + (grad A)")?,
in which 7 define second invariant strain tensor. We assume in the Eq. (12) the case for which
we take _, =0 and F? < 1 thus we can write

T =1, [+ TNV, 15

7 =L+L", 16

where 7, n, and I" define infinite shear rate viscosity, zero shear rate viscosity and time
constant respectively. In the fixed coordinate (R, Z), the flow in the cylinders is unsteady. it
converts into steady flow in a wave frame (', Z) traveling with same speed as the wave travels in
the Z directions. The conversions between the wave frames of reference are

F=R,z=Z-cf, W=W —c, 1=U. 17
In the wave frame U and W denote the velocity mechanisms. The boundary limits are expressed
as



=C,atr=r,andC =C,atF =T,. 18

in the above equations D the thermophoretic diffusion coefficient and Dy the Brownian

diffusion coefficients of mass diffusivity.
Introducing the dimensionless variables

R:E,r:L, Zﬂ,Wzﬂ,Zzé,Zzi,Uzﬁ,
a, a, c c A A ca,
T i ’p T-T = ca
p= At p P TN 5 8 gy PrCR
a,c A cAn T,-T, A n
szazs,rlzr—lzi:g, rzzr—2:1+¢sin27zz,We:E,
cn a, a, a, a,
SN _ (), Ds(C, -Cy) N 2 %)p Dr (T —Th)
f (pc) f LT a;(pc); /" T, a; (o) '
G :Pfgafazz(fo _-rl) B :pfgagazz(c_:o_(:) ¢:£ :Z_?i
r e L e e, e
7‘/:&7_}’0'22_C_1lhr: hr ’hZ: hz . 19
c C,-C, H, H,

We define N,, Re, B,, G,, We, N,, 5, p<l, az, ag, are the thermophoresis parameter,
Reynolds number, local nanoparticle Grashof number, local temperature Grashof number,
Weissenberg number, Brownian motion parameter, wave number, ¢ is the amplitude ratio,

coefficient of thermal expansion, coefficient of expansion with nano concentration respectively.
Using Egs. (17) and (19) into Egs. (1) to (10), we obtain

%_ﬁ.i_ké’:ahz :0, 20
or r 0z
a_u_f_g_{_@—o 21
or r oz
5Ref uM s w :—@+32g(rrz)+éi(rr")—ér%+SZRe5 5 18L+%
or 0z or 0z r or r r oz oz

— ahZ :| hZ ,
or 22




5Re(u%+w@j= P10 )+5 (r)+S” Re{ah 5(E‘£+%ﬂ

or 0z 0z ror or r oz oz
(r—2+h,j+e,9+8,a, 23
r
fudond Dy ) a2 80 1%, M) )
or oz or oz R, 0z roz or) or
5 uahz+ on, —h, i r—2+hr w_1119 rahz —3i(i+1j r—2+hr v 25
or 0z 0z r or R,|ror or oz\or r)ir
2
1 a (r%j_k Nb%a—aﬁ' Nt(% =0, 26
rar or or or or
1 8( aaj 1 a( 89)
r—|+— r—||=0. 27
rar or N, rar or

where
We note above equations are non-linear. therefore, we are involved to solve our problem by the

suppositions of low Reynolds number and long wavelength, avoiding the terms of order 5 and
greater, Egs. (20) to (27) take the following form

ahr +£:O 28
or r
op
=0,
P 29
a_p:li r(lJrWe@ (@j +82Re%(r—2+hr)+Gr6’+ B,o, 30
oz ror or )\ or or r
I ow_ 1110 8h
—+h | —=-—— 31
r or ar ar
10(,90) 6—0%+Nt 20y _0, 32
rar or or or or
10( oo N, 10
r ——(r—)) =0,
rar( ar) b(ré (r r)) 33

where
S? = *;)cz—g‘ and R, = a2° are the Strommers number (magnetic force number) and the magnetic

Reynolds number respectlvely. Eqg. (29) illustrates that p is not a function of r. The final
dimensionless boundary limits for non-conductive cylinders are

w=-latr=r,w=-1h =h, =0, atr=r,,
o=60=latr=r, c=0=0atr=r,, 34



Analytical solutions
Homotopy perturbation solution

Solution of Eq. (31) subject to the relevant boundary condition shows that h, = 0. (i.e continuity

of the normal component of the magnetic field across the boundary gives that induced magnetic
field in the radial direction is zero). Integrating Eq. (31) after replacing h, =0 one finds

oh, ( Rmrzj X,
=— — |W——. 35
or r r
To determine the constant x;, we find from Eqgs. (4) and (35) as
R
ng_ahz =(m—rz]w+ﬁ. 36
or r r

Since J, =0 at r=r, so x, = R, r,. Now replace h, =0 and eliminate 2 in Eq. (30). To
achieve the solution of above equations, we have used homotopy perturbation method. The
homotopy perturbation technique allows [39, 40] to write Egs. (30), (32), and (33) as

H(j,o) = (- DE() - £(oy)]+ J[£(0)+ N, @i( —»} 37
H(j.6) = (1— DIEO) —£(@)] + j[£(0>+ Nt(g)z N ‘Zf aa‘: } 38

H(j,w) =@- j)EW)- £<w20>]+J[aw)-agég(rw{;—ﬁ“}] Mrz G@+Bo} 39

where M =S?ReR_ (Hartmann number), H = Mr,, and the linear operator and the initial
predicts are selected as

MZrZ
£ -~ o —— — e —— JRS— —

o of rar( ) r ar_( )

r—r,
Gzo(r Z)—( ) ‘920( z) = ( _ ),
1~ b2 1 2
40
W,y = —1+dﬁ(allr2 +a,r" +a,r ).

dz

Allowing to HPM, we describe



0=0,+j0,+j%0, +..,
oc=0,+jo, + )0, +
W= W, + JW, + jPW, +...,
Fo=F, +jF +j2Fy +. “
With the aid of above equations, Egs. (37) to (39) after gathering the like powers of j and
concluding the perturbation outcomes for parameter j — 1, the appearance for concentration
field, temperature and velocity can be printed as

) 42
=Lyl +rlo+ L Inr+104,
3 2
O="Logl +1r Ul s+l r+ Ll Inr+7,, 43
The solutions of axial velocity and the axial induced magnetic field can be directly definea as
d - -
W= —1+d—lo(a11r2 +a,r" +a,r H) +(- —+a27 2 —a,r® +a,r"
z
A, I Fa, ™ +a,r T rart ta,r )+ (—+ ar’
At +a,r 7 +ag r M ra,rt var it va,rtt ra r
Al +a, r " Fagr®™ agr T +agr’t +a,r Pt +ag,rlinr
+agr? +agrt +agr™). 44

_aerZRm+a47r2Rm 1

1 1
hz = —§a27r2r2Rm+Za62r2r2Rm —Ea%rzrsz

r r
1 1 1 a.r>"r,rR
+=a,r’nR —=a,r’rR —=a,r'rR +-2___2m
3 3 4 2+3H
—2-H 1-H 1-H 2-H
a53r r2 I:zm + a24r r-2 Rm + a54r r-2 I:zm _ a57r r-2 Rm
H+2 H-1 H-1 —H+2
ar “"r,R. . a,r *"r,R, . a,r "R . aisr "R
-2+H 2H H H
a28r " r-2 Rm a64rH r2 Rm aGOrZH r2 Rm a25rl+H rZ Rm
H H 2H 1+H
1+H 2+H -2+3H 2H
Al LR, Agl LR, Ayl LR, N Al LR,
1+H 2+H -2+3H r—2Hr
2H —2H -2H
a.,.r"r,R a.r -"r,R a..r-'r,R 1 d
4 9so 2R | 2 2Rm 851 2R allrzrsz_p
r—2Hr r+2Hr r+2Hr 2 dz
a;r r2R dp _apr rzR dp 1 45

—a.r rR Inr-a.,.
H dz H dz 62" 2 "

Current density distribution takes the following form




r,R d
JQ:%(—1+d—S(anr2+a12rH+a13r )+( T+a27r Z—a,r’

-1-2H 1-H 1+H -1+2H H -H
+a,,r + A, Al Far +a,l" +a,l )

-1-2H ~2H —2-H

a e
H(E ragr® +art +agr " +agr +a,l " +agr
r

1-H —-2+H 1+H 2-H 2+H -1+2H
+ag, T +aglr " " "

+agl +ag, I +aggl +agl

2H

+ag M2t +agr 2"

r,R
+agrlinr+agri+agr +a.rt))+ 2o, 46
r
in which all g; and a; are shown in appendix. Pressure gradient expression can be written as

%: F —8g — 85 — 8y

dz ag, 7
Dimensionless flow rate is defined as [41]
2
Q=|:i+1 1+¢——g2 _ 48
2 2

The dimensionless expressions for time mean flow rate F,, Pressure rise Ap and friction forces
(at the wall) are defined as

Ap = j( )dz, F°—f—r( Pygz, £ = jl—rz( Pyqz. 49

The relations for velocities, stream function and magnetic force function relation are defined as

w=2(C) u=E0n ==y =) 50

r-or Croor
Making use of Eq. (44) and (45) into Eq - (49), we get stream function and magnetic force
function, whereas all the constants are defined in an appendix and constants a,,, a,, and a,,,
ag; appears when we solve Ist and 2nd iteration that can be evaluated by using Mathematica.

Graphical Results

In this unit axial induced magnetic field, current density distribution, temperature and
nanoparticle concentration field, pressure rise, inner and outer friction forces, pressure gradient
and stream lines are discussed. Figures. (1) to (23) is presented for this purpose. Inner and outer

friction forces and pressure rise Ap are calculated numerically. Table 1 is plotted to see the

validation of the applied homotopy technique. This method is shown that velocity profile
satisfied Eq. 34 (boundary conditions of the problem) as well as Eq. 30 and the error generated in
this process can be seen in the last column of Table 1. This technique is exposed a good
validation for this problem with fixed parameters. Fig. 1, is designed to see the impact of
velocity profile for Newtonian fluid as well non-Newtonian fluid. It is depicted in this plot,



velocity profile near the endoscopic or catheter tube decreases whereas quite opposite behavior is
depicted near the peristaltic wall.

The axial induced magnetic field hz for diverse values of thermophoresis parameter, Brownian
motion parameter and magnetic Reynolds number are depicted in the Figures. (2) to (4). In Fig.

(2) and (3) it is seen that the axial induced magnetic field h, drops by swelling the values of
N, and upsurges by swelling the values of N, in the region 0.10<r <0.46 near the inner

cylinder or (endoscope tube) but in the region 0.47 <r <1.1743 near outer cylinder quite
opposite behavior is observed. Fig. 4 shows the impact of R, on the axial induced magnetic

field hz. The graphical effect displays the axial induced magnetic field hz increases by
increasing magnetic Reynolds number R, .
Figs. (5) to (8) described current density distribution for diverse values of M, N,, N, and R, .

It is depicted from Fig. 5 to 7 the current density distribution grows in the portion
1.03<r <1.4746, 0.22<r <0.92, 0.92<r <1.4746 and decays in the portion 0.22<r <1.02,

0.921<r<14746, 0.22<r<0.91 with an increase in the values of M, N, and N,
respectively. One may observe with an increase in the value of N, current density distribution
increases near the inner cylinder, however current density distribution decreases near the inner
cylinder by increasing values of M and N,. It is depicted from Fig. (8) current density
distribution increases by increasing values of magnetic Reynolds number. Figs. (9) and (10) are
designed to perceive the change of temperature profile for diverse values of N, and N, here
temperature profile enhances with the increase of N, and N, .

Variation of nanoparticles concentration for various values of N, (thermophoresis parameter)
and N, (Brownian motion parameter) are depicted in the Figs. (11) and (12) . It is observed that
nanoparticles concentration falls when the values of N, are increasing and it enhances when the
values of N, upturns. Peristaltic pumping (Q >0, and Ap >0), retrograde pumping (Q <0,
and Ap > 0) and augmented pumping (Q >0, and Ap <0) are defined in the Figs. (12) to (14).
It is clear pressure rise increases by increasing the value of N, and decreases by increasing
values of N, in all three regions as shown in Fig. (13) and (14). It is depicted from Fig. 15

pressure rise in the retrograde pumping region increases and decreases in the interval
Q £[-1.5-1.1], Q £[-1,-0.01] respectively, whereas pressure rise decreases with the increase in
the value of M in peristaltic and augmented pumping region. Friction forces can be seen in the
Figs. ( 16) and (17). One may observe inner and outer friction forces have reverse behavior
related to the pressure rise.

Pressure gradient defines in which direction and at what rate pressure changes most rapidly. Figs.
(18) — (20) defined the effect of different emerging parameters of our study on the pressure
gradient. One explains in the wider part of the annulus zg[0.1,0.5] pressure gradient is
comparatively small that is the flow can easily pass without imposition of large pressure gradient
where, in the narrowest part of the annulus z£[0.51,0.9] a much larger pressure gradient is
essential to preserve the same flux to pass it, especially for the thinnest position on z=0.75.
This is in good contract with the physical condition. Also from these figures we can see the
impact of M, N, and N, on the pressure gradient where the height of dp/dz drops with



enhanced M and N, and increase as N, increases.

Trapping is stimulating spectacle of peristaltic wave, which is the expansion of an inside mixing
bolus of fluid by protected streamlines. This confined bolus improves pushed forward with the
peristaltic wave. To get the possessions of M, N, and N, on the trapping, we have prepared

Figs. (21) to (23) . It is noticed from Figs. 21(a, b, c) that the trapped bolus remains same

when the value of M is 0.3 and 0.4 but, the size of the trapped bolus decreases after that,
number of the trapped boluses decreases when the value of M =1.1. Figs. 22(a, b, c)

represents the effects of N, on trapping. One comes to know numbers of bolus decreases while
bolus become large with greater values of N, . Figs. 23(a,b,c) discloses that the number of

trapped bolus remains same, but the magnitude of trapped bolus slightly shrinks with collective
values of N,.

Concluding remarks

This study inspects the nanoparticles properties on the peristaltic flow of Williamson fluid in an

annulus. The leading points of the phenomenon are given as:

1. Induced magnetic field and current density enhances by increasing value of magnetic
Reynolds number.

2. It is examined temperature profile upsurges with rise in Brownian motion and
thermophoresis parameter.

3. Effects of thermophoresis and Brownian motion parameter on nanoparticle concentration is
opposite

4. Friction forces (inner and outer) performed by a different manner related to the pressure rise.

5. Pressure gradient raises as the Hartmann and thermophoresis number increases and lessened
by increasing value of Brownian motion parameter.
r G, M £ z q N, B, We ¢ N, w (Absolute
Error)

0.97 | 048 | 1.73 |02 |0.01 |0.03 |0.89 | 2.08 | 0.04 |0.02 |4.17 | 0.008508
0.98 0.003719

1 0.000262
0.97 | 049 [ 173 [0.2 ]0.01]003 [090 |19 [004 |0.02 |4.17]0.016143
0.98 0.021178

1 0.034813
0.97 |050 [1.73 [02 ]0.01 003 [091]1.8 [004 [0.02 |4.17]0.000572
0.98 0.005231

1 0.020549

Table 1, Absolute Error for velocity profile with fixed parameters.
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Fig. 1, Velocity profile for diverse values of We with fixed parameters are £ =0.22, N, =0.83,
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Fig. 2, Axial induced magnetic field versus r for N, =2.13, ¢=0.18, G, =0.23, B, =0.81,
z=0.21, £¢=0.10, We=0.03, Q=0.13, M =0.79, R, =1.
Fig. 3, Axial induced magnetic field versus r for N, =2.13, 9=0.18, G, =0.23, B, =0.81,



2=0.21, £=0.10, We=0.03, Q=0.13, M =0.79, R, =1.
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Fig. 4 Axial induced magnetic field versus r for ¢ =0.18, G, =0.23, B, =0.81, z=0.21,
£=0.10, We=0.03,Q =0.13, M =0.79, N, =2.13, N, =0.79. Fig. 5, Current density
distribution versus r for ¢=0.49, B, =04, G, =041, ¢=0.22, z=0.21, Q=0.11,
R, =0.13, We=0.03, N, =0.79, N, =0.84.
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Fig. 6, Current density distribution versus r for N, =0.79, ¢=0.49, B, =0.4, G, =0.41,




=022, =021, Q=0.11, R, =2.13, We=0.03, M =0.84. Fig. 7, N, =0.79, ¢=0.49,
B, =04, G, =041, £=0.22, z=0.21, Q=0.11, R, =0.13, We=0.03.

Fig. 8 Fig. 9

Fig. 8, Current density distribution versus r for ¢ =0.49, B, =0.4, G, =0.41, £=0.22,
z=0.21, Q=0.11, We=0.03, N, =2.13, M =0.84, N, =0.79. Fig. 9, Temperature profile
versus r for z=0.03, £=0.12, ¢=0.59,N, =1.83.
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Fig. 10, Temperature profile versus r for z=0.03, ¢ =0.12, ¢=0.59,N, =1.83. Fig. 11,
Nanoparticles concentration versus r for z=0.26, ¢=0.03, ¢ =0.14, N, =3.55.
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Fig. 12, Nanoparticles concentration versus r for fixed parameters are z =0.26, ¢ =0.03,
£=0.14, N, =3.55. Fig. 13, Pressure rise versus Q for fixed parameters are ¢ =0.02,
B, =0.12, G, =0.13, £=0.07, We=0.01, N, =0.15, M =0.76.
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Fig. 14, Pressure rise against Q for fixed parameters are M =0.76, ¢ =0.02, B, =0.12,
G, =0.13, £=0.07, We=0.01, N, =0.15.

Fig. 15, Pressure rise versus Q for fixed parameters are ¢ =0.05, B, =0.12, G, =0.13,




£=0.07, We=0.01, N, =0.02,

N, =0.15.
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Fig. 17

Fig. 16, (Inner friction forces) for ¢ =0.05, B, =0.12, G, =0.13, £=0.07, We =0.01,
N, =0.02, N, =0.15.
Fig. 17, (Outer friction forces) for ¢ =0.05, B, =0.12, G, =0.13, £=0.07, We=0.01,
N, =0.02, N, =0.15.
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Fig. 19

Fig. (18), Pressure gradient versus z for fixed parameters are N, =0.05, ¢ =0.02, B, =0.12,




G, =0.13, £=0.07, We=0.01, M =1.6, Q=0.03.
Fig. (19), Pressure gradient versus z for fixed parameters are N, =0.05, ¢ =0.02, B, =0.12,
G, =0.13, £=0.07, We=0.01, M =1.6, Q=0.03.
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Fig. 20

Fig. (20), Pressure gradient against z for ¢ =0.02, B, =0.12, G, =0.13, £=0.07, We =0.01,
N, =0.15, N, =0.05 Q=0.03.

Figure. 21(a) Figure. 21(b)



Figure. 21(c) Figure. 22(a)

Fig. (21), Stream lines graphs for diverse values of M, (a, b, c) for M =0.3, 0.4, 1.1. The other
parameter are ¢ =0.31, B, =4.79, G, =2.21, £=0.35, We=0.05, N, =0.23, N, =5.14,
Q=0.13.

Figure. 22(b) Figure. 22(c)

Fig. (22), Stream lines graphs for diverse values of N, (a,b,c) for N, =0.23, 1.33, 2.33. Other
parameters are ¢ =0.31, B, =4.79, G, =2.21, £=0.35, We=0.05, M =0.3, N, =4.14 .



Figure. 23(a) Figure. 23(b)

Figure. 23(c)

Fig. (23), Stream lines graphs for diverse values of N, (a, b, c)=3.14, 4.14, 5.14. The other
parameter are B, =4.79, G, =2.21, £=0.35 We=0.05, M =0.3, N, =0.23, Q=0.13.
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