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Abstract

Modular multiplication is the most crucial operation in many public-key crypto-systems, which can be accomplished by
integer multiplication followed by a reduction scheme. The reduction scheme involves a division operation that is costly
in terms of computation time and resource consumption both on hardware and software platforms. Montgomery modular
multiplication is widely used to eliminate the costly division operation. This work presents an efficient implementation
of full-word Montgomery modular multiplication. This incorporates the more efficient Karatsuba algorithm where
the complexity of multiplication is reduced form O(n2) to O(n1.58). The Karatsuba algorithm recommends to split
the operands into smaller chunks. Two methods of operand splitting are exploited: 1) Four Parts (FP) Splitting
and 2) Deep Four Parts (DFP) Splitting. These methods are then used in the design of Integer Multiplier (IM) and
Montgomery Multiplier (MM). The design is synthesized using Xilinx ISE 14.1 Design Suite for Virtex-5, Virtex-6 and
Virtex-7. Compared with the traditional implementations, the proposed scheme outperforms all other designs in terms
of throughput and area-delay product. Moreover, the proposed scheme utilizes the least hardware resources in the known
literature. The proposed MM design is able to compute modular multiplication for the Elliptic Curve Cryptography
(ECC) field sizes of 192-512 bits.

Keywords: Montgomery modular multiplication, FPGA, Karatsuba algorithm

1. Introduction

Public Key Cryptography (PKC) [1], also called asym-
metric cryptography is a cryptographic scheme which uses
a pair of keys, namely the public key and the private key.
As the name depicts the public key is known to everyone
while the private key is only known to the receiver of the
message. The keys are mathematically related but never
the same. Unlike the symmetric key cryptography which
uses the same key for encryption and decryption, here each
key is assigned separate task. The public key encrypts the
data while only the corresponding private key is used for
decryption. Moreover the derivation of public key from the
private key is computationally infeasible. This permits the
exchange of the public key freely.

PKC algorithms most commonly include schemes which
are based on RSA [2] and Elliptic Curve Cryptography
(ECC) [3],[4]. ECC algorithms are based on the algebraic
structures of the elliptic curves over the finite fields. All of
the PKC schemes require arithmetic operations (modular
addition/subtraction, modular multiplication and modu-
lar inversion/division) with large operands and the secu-
rity of the schemes increase with the increased size of the
operands [5]. For the same level of security ECC requires
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much smaller operands as compared to RSA [6]. This
makes ECC a popular choice for implementing the PKC
schemes, especially when used in resource constrained en-
vironments.

ECC algorithms can be implemented in software with
high level of flexibility but at a cost of high time complex-
ity. They can also be implemented in hardware with high
running speed due to the efficient use of the modular mul-
tipliers. The ECC algorithm, as shown in the Figure 1, can
be divided into four layers. The bottom layer consists of
finite-field modular operations like addition, subtraction,
multiplication and inversion. Among these modular opera-
tions, multiplication and inversion are most costly in terms
of computation time and hardware resources. In particular
modular inversion is very slow in hardware and software as
compared to modular multiplication. However the modu-
lar inversion can be eliminated by introducing extra mul-
tiplications and by changing the coordinate system from
affine to projective [7]. Hence an overall performance of
the ECC algorithm is dependent on the modular multipli-
cation if projective coordinates system is adopted. There-
fore modular multiplier is the bottleneck in ECC based
crypto-systems and its optimization is one of the common
strategies to boost the performance of any ECC scheme.

Modular multipliers can be classified into three types
in general. A standard method for computing a modu-
lar multiplication involves a division over a modulus M .
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Figure 1: ECC Algorithm

The division over modulus M is an expensive operation
in terms of computation time and resource consumption.
Interleaved Modular Multiplication (IMM) as proposed by
[8] and efficiently implemented by [9] and [10] is a method
in which reduction is done while multiplication. The inter-
mediate results are reduced and then added to get the final
result. The most common method for a modular multipli-
cation operation is the Montgomery Modular Multiplica-
tion (MMM) [11]. Different implementation possibilities of
the Montgomery algorithm are discussed and analyzed in
[12]. The IMM and MMM methods have the advantage of
being flexible, which means that these can be used for any
primes. However, the MMM method is significantly fast
for the large operands as compared to the IMM method
[13].

1.1. Related work

Many ideas have been proposed for the efficient hard-
ware implementation of MMM. All these implementations
can be broadly classified into two major categories, the
bit-wise implementations and the block-wise implemen-
tations. The bit-wise implementations use the standard
FPGA fabric and does not use any of the dedicated multi-
pliers present in the modern FPGAs. The designs based on
FPGA fabric tends to be slower when compared to the de-
signs that utilize FPGA dedicated multipliers. The block-
wise implementation divides the operands into chunks and
these chunks are then multiplied by using the dedicated
embedded multipliers. The designs based on embedded
multipliers offer higher speed and can be adopted in time
critical applications.

Several implementations that are using the dedicated
multipliers and the fast carry chain adders are discussed.
Mondal et al. in [14] proposed to use 64 × 64 bit soft
cores for their design and different configurations and their
hardware resources have been discussed. Brinci et al. in
[15] designed a multiplier for Barreto-Naehrig (BN) curves.
They have used non-standard splitting to fit the Xilinx
Digital Signal Processor (DSP) block but this design can
only be used for the BN curves defined over a special
prime number and lacks generality. Kuang et al. in [16]
proposed a low-cost high-performance Montgomery mul-
tiplication algorithm where Carry-Save Adder (CSA) has
been exploited to avoid propagation delay at each addi-
tion operation. Configurable CSA was proposed to reduce
extra clock cycles for pre-computation and format con-
version. In [17] Rezai et al. designed an efficient Mont-
gomery multiplication architecture based on digit serial
computation. It relaxes high-radix partial multiplication

to binary multiplication. Several multiplications of con-
secutive zero bits are performed in one clock cycle. Also
right-to-left and left-to-right modular exponentiations ar-
chitectures are modified to use as its structural unit. The
design in [18] optimizes 512-bit addition and 256-bit multi-
plication using 64-bit carry chains and multiplier soft cores
respectively and achieved a frequency of 188 MHz. Yang
et al. in [19] achieved almost 50 % running efficiency com-
pared with the traditional implementation method by ef-
ficiently using IP cores of Xilinx FPGA to design 512-
bit addition and 256-bit multiplication. The design of
a hardware elliptic curve cryptographic processor is pre-
sented in [20]. For the modular multiplication, full-word
Montgomery modular multiplication along with the corre-
sponding architectures are described. The 256-bit integer
multiplier is designed by cascading 16-bit unsigned mul-
tipliers and this process is continued till the desired mul-
tiplier size is achieved. Addition is performed using the
fast carry look-ahead adders. The design in [21] propose
to split the operands in digits and then the computations
are performed. The complexity of algorithm depends upon
the size of digits and not on operand size. The hardware
architecture of the proposed algorithm is also described.

Many designs have been proposed that employ Karat-
suba algorithm to enhance the efficiency of Montgomery
algorithm. Gong et al. in [22] designed a 256-bit Mont-
gomery multiplier by utilizing the embedded 18× 18 mul-
tipliers with a 5-stage pipeline structure. Operands are
splitted into two parts according to the Karatsuba algo-
rithm to reduce the number of embedded multipliers. This
architecture has optimized the clock cycles however the
operating frequency is limited to 30.38 MHz. The design
in [23] utilizes nine 64-bit multiplier soft cores as basic
building blocks to develop Karatsuba-based integer mul-
tiplier. The integer multiplier is then incorporated in the
design of 256-bit Montgomery multiplier. Critical path
delay is optimized at the cost of increased iterations. In
[24] the operands are divided into chunks and then these
chunks are multiplied either using the embedded multipli-
ers or the fine-grained logic depending upon the length of
the chunk of operands. However, large multipliers may
face routing delays when operating at higher frequencies.
The Karatsuba based Montgomery multiplier in [25] em-
ploys two parts splitting approach for operands splitting.
Higher radix Montgomery multiplication algorithm is uti-
lized since it makes use of embedded multiplier blocks,
however the design is expensive in terms of area utiliza-
tion. The Montgomery multiplier in [26] utilizes the Karat-
suba algorithm with 4 levels of recursion. The operands
are splitted into two chunks using two parts splitting ap-
proach. Each chunk is then again divided into two chunks
in a recursive fashion till the length of chunks matches
with the length of embedded DSP blocks.

All of the implementations discussed above split the
operands into two chunks either recursively or non-
recursively for the application of Karatsuba algorithm.
Our proposed design differs from the designs discussed as
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we first suggest to find the optimum point for the number
of chunks and then apply the Karatsuba algorithm. The
detailed view is provided in the next section. In this way
the best results in terms of area and performance can be
achieved.

The implementations that utilize LUTs instead of the
dedicated multipliers are also discussed. A serial inter-
leaved modular multiplier based on radix-4 Booth multi-
plication is presented in [27]. It is a LUT based design and
does not consume any embedded multipliers. The design
in [28] provides a hardware architecture for implementa-
tion of the parallel interleaved modular multiplier. This
architecture consist of four processing elements that oper-
ate in parallel to perform the tasks assigned according to
the algorithm. The design of Montgomery modular multi-
plier using the systolic array architecture is demonstrated
in [29]. Systolic array consist of repeated structures called
cells that operate in parallel to reduce the critical path de-
lay. Authors in [10] incorporates the Montgomery power
laddering technique along with the radix-4 serial multiplier
to achieve 50 % reduction in the clock cycles.

2. Contribution

Modular multiplication operation is the basic opera-
tion in many public-key crypto-systems. The most widely
used algorithm for the implementation of modular mul-
tiplication is the MMM algorithm. This work presents
an efficient architecture for the implementation of Mont-
gomery multiplication algorithm. To enhance the effi-
ciency of Montgomery Multiplier (MM) Karatsuba-Ofman
algorithm is employed. The Karatsuba algorithm recom-
mends to split the operands into chunks in order to reduce
the complexity of multiplication. Operands can be splitted
into any number of chunks and then multiplied. As we split
the operands further the size of chunks decreases and the
number of multiplications increases. In this work we have
find a balanced point to optimize the hardware resources
and the computation time simultaneously. The operands
are splitted into four parts and then this technique is ap-
plied recursively to get the deep four parts splitting of
operands. So the two methods introduced here are termed
as Four Parts (FP) splitting and Deep Four Parts (DFP)
splitting. These methods are then used in the design of
Integer Multiplier (IM) architectures and the MM archi-
tectures. Since the IM is the most important operation
in the Montgomery multiplication algorithm so enhancing
the speed of IM can increase the overall efficiency of MM.
The design is synthesized using Xilinx ISE 14.1 Design
Suite for Virtex-5, Virtex-6 and Virtex-7. The proposed
MM design is able to compute modular multiplication for
the common ECC field sizes of 192-512 bits. It provides
the best results in terms of throughput and the area-delay
product, so it can be efficiently used in elliptic curves and
pairing based crypto-systems.

Algorithm 1: Montgomery Modular Multiplication

Input: X, Y , M , n = log2 M , R = 2n

M1 = −M−1mod R
Output: Z = X × Y ×R−1 mod M

1 D ← X×Y
2 E ← D ×M1 mod R
3 Z ← (D + E ×M)/R
4 ifZ > M then return Z −M
5 Else returnZ

2.1. Montgomery Algorithm

Montgomery modular multiplication [11] is a method for
computing fast modular multiplication, introduced by Pe-
ter L. Montgomery in 1985. Montgomery multiplication
computes X ×Y mod M , where X and Y are positive in-
tegers and M is a large prime. Conventional approaches
for computing the remainder use division operation which
is costly. Montgomery multiplication replaces the costly
division operation by simple shift and add operations, how-
ever this method works only on the numbers represented
in Montgomery domain. Therefore, to take the advantage
the operands are first transformed into the Residue Num-
ber System (RNS) domain before the operation and then
the result is re-transformed after operation. The radix R
is selected to be two to the power of word length and must
be greater than Modulus. R and M must be relatively
prime for the algorithm to run.

Given n bit positive number M (modulus) and two n
bit operands X and Y where 0 < X,Y < M , the result Z
of the modular multiplication is Z = X × Y mod M .

2.2. Karatsuba-Ofman Algorithm

The Karatsuba-Ofman algorithm reduces the complex-
ity of multiplication by splitting the operands into smaller
and equal chunks. The complexity of regular multiplica-
tion using the school-book method is O(n2). The method
discovered by Karatsuba and Ofman [30] i.e. by splitting
operands, reduces the complexity to O(n1.58), where n is
the length of operands to be multiplied. For the mul-
tiplication of two numbers, Karatsuba-Ofman algorithm
recommends to split the operands into higher and lower
chunks as follows.

X1 = (xn−1, ..., xdn/2e)

X0 = (xdn/2e−1, ..., x0)

Y1 = (yn−1, ..., ydn/2e)

Y0 = (ydn/2e−1, ..., b0)

The operands X =
∑2n−1

i=0 xi2
i and Y =

∑2n−1
i=0 yi2

i can
be rewritten as

X = X0 + 2nX1

Y = Y0 + 2nY1

3
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Table 1: Comparison of Lengths and Number of Multipliers for
Karatsuba and School-book Methods

School-Book Karatsuba
Length M length M

2-Parts N/2 4 N/2 3
3-Parts N/3 9 N/3 6
4-Parts N/4 16 N/4 10

The result for school-book method of multiplication is
given below:

Z = X · Y = X0Y0 + 2n(X0Y1 + Y0X1) + 22nX1Y1 (1)

Four multiplications which are half the size of original
operands are required as shown in the equation above.
This multiplication can be reformulated using the Karat-
suba algorithm as given:

Z = X ·Y = X0Y0+2n(X1Y1+X0Y0−(X1−X0)(Y1−Y0))

+22nX1Y1 (2)

Comparing equations 1 and 2 it can be seen that only
three multiplications are needed in equation 2 and it saves
one multiplication. The operands can be further splitted
to perform the process recursively till a reasonable size
of operands is reached. Reducing four multiplications to
three also enhances the speed of multiplication.

2.3. Operands Splitting

Operands can be splitted into any number of chunks
and then multiplied using the School-book or Karatsuba
method. Table 1 shows the number of multipliers needed
when operands are divided into two, three or four parts
for both methods. As we split the operands further size of
operands decreases and the number of multipliers increases
and a few additions are introduced to generate the final
result. Splitting operands further may not be suitable as
the cost of overhead additions may overcome the area and
time saved.

2.3.1. Two-parts Splitting

Operands can be splitted into two parts according to the
Karatsuba algorithm. The effective part of the Karatsuba
algorithm is the computation of two differences, X1 −X0

and Y1−Y0, and then calculate the product (X1−X0)(Y1−
Y0). So the equation (X1Y1 +X0Y0− (X1−X0)(Y1−Y0))
can save one multiplication, which is the essence of the
Karatsuba algorithm.

Modern FPGA devices have DSP blocks which contain
dedicated multipliers. Virtex-5 and Virtex-6 DSP blocks
contains asymmetrical 18 × 25 signed multipliers. If n is
the size of the embedded multiplier, this architecture can
be used for 2n bit multiplication, using three embedded

Table 2: Estimated Number of DSP Blocks for Splitting Techniques
and for the DFP splitting technique

Bit-length 4-Parts 3-Parts 2-Parts DFPS
192-bit 110 72 90 106
224-bit 120 144 132 112
256-bit 120 222 132 112
384-bit 300 336 348 260
512-bit 560 696 693 496

multipliers. This can also be generalized for any multipli-
cation where the operands size is less than 2n using only
three embedded multipliers. Earlier FPGAs had only em-
bedded multipliers, but the modern DSP blocks contain
internal adder as well making it possible to perform the
required additions inside the DSP blocks.

2.3.2. Four-parts Splitting

The Karatsuba-Ofman algorithm can be applied recur-
sively. Four-parts splitting can be obtained by the recur-
sive application of two-parts splitting. The operands for
the four-parts splitting are given:

X = X0 + 2nX1 + 22nX2 + 23nX3

Y = Y0 + 2nY1 + 22nY2 + 23nY3

The result of the school-book method for multiplication is
given below

Z = X · Y = X0Y0 + 2n(X1Y0 + X0Y1)

+22n(X2Y0+X1Y1+X0Y2)+23n(X3Y0+X2Y1+X1Y2+X0Y3)

+24n(X3Y1 + X2Y2 + X1Y3) + 25n(X2Y3 + X3Y2)+

26n(X3Y3) (3)

The equation above shows that 16 multiplications are re-
quired and the operands for the multiplications are one
fourth of the original operands and therefore 16 DSP
blocks are used if each multiplication is restricted in size to
use only single DSP block. Now the same equation after
the application of Karatsuba-Ofman algorithm reformu-
lates to:

Z = X ·Y = P00+2n(P11+P00−D10)+22n(P22+P11+P00

−D20) + 23n(P33 + P00 + P22 + P11 −D30 −D21) + 24n

(P33 + P22 + P11 −D31) + 25n(P33 + P22 −D32)

+26nP33 (4)

By comparing equation 3 and 4 it can be seen that the
number of multiplications are reduced to 10 here with the
operands size remained one fourth of the original operands.
Number of DSP blocks are also reduced to 10 given that
each multiplication is reduced to single DSP block. So here
6 multiplications are saved. The partial products and the
difference equations are given:

4
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Figure 2: FP splitting Integer Multiplier
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Figure 3: Clock cycle instants of the FP Splitting multiplier

P00 = X0.Y0

P11 = X1.Y1

P22 = X2.Y2

P33 = X3.Y3

D32 = (X3 −X2).(Y3 − Y2)

D31 = (X3 −X1).(Y3 − Y1)

D30 = (X3 −X0).(Y3 − Y0)

D21 = (X2 −X1).(Y2 − Y1)

D20 = (X2 −X0).(Y2 − Y0)

D10 = (X1 −X0).(Y1 − Y0)

Table 2 discusses the DSP blocks the device consumes
for the design of the multipliers. Experimental results
shows the number of DSP blocks for two, three and four
parts which depicts that four parts splitting is the opti-
mal choice. Splitting each chunk further into four parts,
i.e. deep four parts splitting is also introduced in this
work. Table 2 also shows the DSP blocks for DFP split-
ting technique. Comparing FP splitting with DFP split-
ting reveals that it can save hardware resources with large
size operands.

Algorithm 2: Four Parts Splitting Multiplication Al-
gorithm

Input: X, Y , X =
∑3

i=0 2ikXi, Y =
∑3

i=0 2ikYi

Output: Z = X × Y
1 for i = 3; i ≥ 0; i = i− 1 do
2 j = i− 1
3 Pi,i ← Xi · Yi

4 while j ≥ 0 do
5 Di,j ← (Xi −Xj) · (Yi − Yj)
6 j ← j − 1

7 end

8 end
9 S0 ← P00

10 S1 ← P11 + P00 −D10

11 S2 ← P22 + P11 + P00 −D20

12 S3 ← P33 + P00 + P22 + P11 −D30 −D21

13 S4 ← P33 + P22 + P11 −D31

14 S5 ← P33 + P22 −D32

15 S6 ← P33

16 Z ←∑6
i=0 2ikSi

17 return Z

2.4. FPGA Architecture

Field Programmable Gate Arrays (FPGAs) are the in-
tegrated circuits that can be configured by the user after
manufacture. FPGA devices consist of Configurable Logic
Blocks (CLB) which are connected through programmable
interconnects. This property of the device has made it
ideal for many applications including cryptography. Cryp-
tographic systems such as secure communications, bank
payments, data transfer have become an important part
in our daily life. For the implementation of these systems
FPGAs are the ideal choice. In addition to the config-
urable blocks, modern devices are provided with dedicated
software cores and the hardware cores. Various soft cores
for memory and arithmetic operations are available on the
modern Xilinx FPGAs like Virtex-5, Virtex-6 and Virtex-
7. These soft cores can easily be modified and multiple
cores can be used. On the other hand CLBs gives the
user the freedom for optimizing the code to increase the
performance of the device.

3. Integer Multiplier

The efficiency of the MM is dependent on the efficiency
of the IM. This paper employs the Karatsuba algorithm to
enhance the efficiency of the multiplier. Two approaches
have been exploited, the Four-Parts splitting and the Deep
Four-Parts splitting. Each of them are discussed here
along with the results.

3.1. Four-Parts Splitting Multiplier

Figure 2 shows the overall architecture for the FP split-
ting multiplier and Algorithm 2 explains the steps involved

5
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in the computation of the final result. In FP splitting
method the operands to be multiplied are splitted into
four equal chunks according to the Karatsuba-Ofman al-
gorithm. At the start of multiplication the operands are
stored in the input registers A and B as shown in the
Figure 2. The next step is the generation of the partial
products. Four unsigned multipliers of N/4 bits from 1 to
4 and six signed multipliers of (N/4 + 1) bits from 5 to
10 generate the partial products. Ten multiplications in
parallel are executed with the help of multipliers 1−10× as
shown in the figure. Steps 1-7 of the algorithm explains
the generation of the partial products. Ten multipliers are
the result of the reduction achieved through Karatsuba-
Ofman algorithm as shown in the equation 4. The results
of the partial products acts as the inputs for the adders
which are then added using N/2 bit fast carry chain adders
as shown by the algorithm steps 9-14 and also shown in
the figure which is followed by a final addition to generate
the product. Here the splitting depth is 1.

The Figure 3 shows the clock cycles instants for the FP
splitting multiplier. The whole multiplication takes seven
clock cycles. During the first operation as shown in the fig-
ure, the input operands are loaded in the input registers.
One clock cycle is needed for the operation Load Register
(LR). The next operation comprises the computation of
the partial products that is PPM (Partial Products Multi-
plication) during second operation as shown in the figure.
The next operation adds the results of the PPM and con-
sumes four clock cycles. PPA (Partial Products Addition)
is the pipelined stage which adds the partial followed by
the FA (Final Addition) of the products. FA consumes a
single clock cycle. This as a whole consumes seven clock
cycles for full operation.

3.2. Deep Four-Parts Splitting Multiplier

In DFP splitting method the splitting depth is 2 which
means that each part of the operand is further splitted

Algorithm 3: Deep Four Parts Splitting Multiplica-
tion Algorithm

Input: X, Y , X =
∑3

i=0 2ikXi, Y =
∑3

i=0 2ikYi

Input: X0 =
∑3

i=0 2ikX0,i...X3 =
∑3

i=0 2ikX3,i

Input: Y0 =
∑3

i=0 2ikY0,i...Y3 =
∑3

i=0 2ikY3,i

Output: Z = X × Y
1 for i = 3; i ≥ 0; i = i− 1 do
2 Zi = FPS(Xi, Yi)
3 end
4 for i = 3; i ≥ 1; i = i− 1 do
5 j = i− 1
6 while j ≥ 0 do
7 Di,j ← (Xi −Xj) · (Yi − Yj)
8 j ← j − 1

9 end

10 end
11 S0 ← Z0

12 S1 ← Z1 + Z0 −D10

13 S2 ← Z2 + Z1 + Z0 −D20

14 S3 ← Z3 + Z0 + Z2 + Z1 −D30 −D21

15 S4 ← Z3 + Z2 + Z1 −D31

16 S5 ← Z3 + Z2 −D32

17 S6 ← Z3

18 Z ←∑6
i=0 2ikSi

19 return Z

into four parts. One main advantage of DFP splitting
multiplier is that the hardware is optimized. DFP splitting
multiplier exploits the fact that the basic multiplier inside
the DSP block in Virtex-6 can be fully utilized by splitting
the operands till the point where the length of operands
matches the size of multiplier in DSP block. The work in
this paper uses 16× 16 multiplier at the very deep level so
that the design remain general for all the devices. Figure 4
explains the architecture of DFP splitting multiplier. The
only difference is that the FP splitting multiplier is called
instead of direct multiplication. Algorithm 3 explains the
steps involved in the computation of the product. The
operands are first splitted into four parts and each part
is further splitted into four parts to achieve the deep four
parts splitting. Steps 1-9 of the algorithm generate the
partial products in parallel while the steps 12-16 performs
the addition of the partial products, the results of which
are then added by the fast carry chain adders.

4. Overall Montgomery multiplier architecture

The Montgomery multiplication algorithm is shown in
the Algorithm 1. This algorithm consist of three n bit in-
teger multiplications which defines the overall efficiency of
the algorithm. This work presents an efficient Montgomery
multiplier architecture being implemented on modern FP-
GAs.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1            0

Register

Register

Multiplier 
Controller

/R

N

2N

M

X Y

Register file

R1
R2
R3

FPS Karatsuba Multiplier

Data Lines

Control Lines

FPS Karatsuba Multiplier

X Y M M1

Multiplier 
Controller

clk reset

R2
R1

R3

2N

/R

N

M

MUX

Z

Register file

Register

Register

Figure 5: Montgomery modular multiplier

Figure 5 shows the proposed Montgomery multiplier ar-
chitecture. It consist of n bit multiplier. The 2n bit regis-
ters are for holding the intermediate multiplication results,
which are used in the later steps. The three multiplications
are computed in series. The result of first multiplication
is saved in the register which is then added to the result of
third multiplication. A final reduction is used to compute
the Montgomery result.

The proposed design performs the Montgomery multi-
plication by executing the series of operations as shown
in the Figure 6. Registers X and Y are loaded with the
operands on the first clock cycle as depicted by L, Load
Register. During the first multiplication operation the
operands are inputs X and Y . As soon as the multiplier
gets the operands, first integer multiplication is started. It
computes the product consuming 7 clock cycles and the 2n
bit product is stored in the register during the operation
W. It writes the result in the register file. The Figure 6
shows the clock cycle instants of the multiplier. Starting
from the initial multiplication three multiplications are ex-
ecuted in series. The input registers X and Y are again
loaded with the new operands during the operation Load
Register. Operands for the second multiplication are mod-
ulus of the first multiplication result and M1. 7 clock cy-
cles are required for the multiplication. Again the results
are stored in the registers which takes a single clock cycle.
The input registers are loaded for the final multiplications.
The operands here are modulus of the second multiplica-
tion result and M . 7 clock cycles are needed to complete
the multiplication. In this way a total of 26 clock cycles
are required to compute three multiplications in series. 3
more clock cycles are needed for the addition of the re-
sults of the multiplications according to the Algorithm 1
and the final comparison and subtraction if needed. In
this way a total of 29 clock cycles are used to compute the

clk

mul

add/
sub

Multiplication 1 Multiplication 2 Multiplication 3

idle

idle

idle

clk

op

PPM

PPA FAFPSM

LR PPM PPA FA

LR: Load Register

PPM: Partial Products Multiplication
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1
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clk
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1 2 3op
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L: Load Register W: Write to Register FileIM: Integer Multiplication

A: Addition C: Comparison S: Subtraction

L First IM Second IMW Third IM

Figure 6: Clock cycle instants of the Montgomery multiplier

whole Montgomery multiplication result.

5. Implementation Results

The architectures proposed in the previous sections are
not designed for any specific FPGA family. Length of the
multiplier at the root level of DFP splitting multiplier is
selected so that they can be implemented in several FPGA
families.

Both the architectures FP splitting and DFP splitting
multipliers are evaluated for five common operand sizes
p ∈ {192, 224, 256, 384, 512}. The proposed Montgomery
multiplier has been designed in Verilog HDL and imple-
mentation has been done in Xilinx ISE Design Suite 14.1
for Virtex-5, Virtex-6 and Virtex-7. Table 4 shows the
implementation results for FP splitting and DFP splitting
modular multipliers. As it is obvious that the deep four
part splitting method gives the advantage of saving DSP
blocks for some operand lengths, however it is advanta-
geous only for higher operand lengths. The reason is that
the chunk length when the splitting depth is 2, is less than
the length of multiplier provided by the DSP block for the
operands of smaller length. Implementation results also
show that the total time of Montgomery multiplication is
increased in case of DFP splitting technique. This is be-
cause it requires more clock cycles. Table 5 shows the
performance comparisons with other designs implemented
on similar platform.

The proposed design runs at 81.98 MHz and takes 29
clock cycles to compute the final Montgomery multipli-
cation result for 256-bit operands. It consumes 120 DSP
blocks. The design in [14] uses school-book method to
compute the Montgomery modular multiplication. It con-
sumes 16 64×64 soft cores and operates at 102 MHz. The
hardware resources consumed are almost double than the
proposed design while 24 % frequency overhead is achieved
here. However, no information is provided about the time.
Brinci et al. in design [15] exploits the asymmetric split-
ting of the operands to propose a design for the BN curves.
Although the design is able to achieve a frequency of 208
MHz yet it is not flexible and is used for BN curves only,
which is the major drawback. It also consumes 50 % more
DSP blocks as compared to the proposed design. In [18]
author presented the design for modular multiplier that is
based on school-book method. The operating frequency
is 188 MHz but the latency information and the overall
time information is not provided. It also consumes almost
2 times of the DSPs than the proposed design. The design
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Table 3: FP Splitting and DFP Splitting Multiplier

Platform Bit-Length LUTs Slice Registers Freq.(MHz) CCs DSPs Min Period(ns) Time(ns)
FP Splitting Multiplier

Virtex-7

192 4069 2794 130.94 7 110 7.63 53.41
224 5210 2724 127.59 7 120 7.83 54.81
256 5285 3108 124.42 7 120 8.03 56.21
384 11659 4644 103.72 7 300 9.64 67.48
512 20695 6180 99.68 7 560 10.03 70.21

DFP Splitting Multiplier
192 4997 2613 86.51 10 130 11.55 111.50
224 5925 3041 84.86 10 136 11.78 117.80
256 6853 3468 83.27 10 136 12.00 120.00
384 15211 5823 95.43 10 260 10.47 104.70
512 23703 8122 86.39 10 492 11.57 115.70

FP Splitting Multiplier

Virtex-6

192 4069 2974 115.46 7 110 8.66 60.62
224 5210 2724 112.35 7 120 8.90 62.30
256 5285 3108 109.40 7 120 9.14 63.98
384 11659 4644 92.30 7 300 10.83 75.81
512 20695 6180 87.21 7 560 11.46 80.22

DFP Splitting Multiplier
192 4997 2614 79.66 10 130 12.55 125.50
224 5925 3041 77.98 10 136 12.82 128.20
256 6853 3469 76.37 10 136 13.09 130.90
384 15211 5817 94.12 10 260 10.62 106.20
512 23703 8122 83.75 10 492 11.94 119.40

FP Splitting Multiplier

Virtex-5

192 4165 3071 91.10 7 110 10.97 76.79
224 4650 2837 88.17 7 120 11.34 79.38
256 5413 3237 85.43 7 120 11.70 81.90
384 11851 4837 70.22 7 300 14.24 99.68
512 20951 6437 65.65 7 560 15.23 106.61

DFP Splitting Multiplier
192 5585 2710 61.33 10 110 16.30 163.00
224 6609 3153 59.50 10 116 16.80 168.00
256 7633 3597 57.78 10 116 17.30 173.00
384 15399 6008 61.27 10 260 16.32 163.20
512 23703 8122 54.80 10 492 18.24 182.40

in [19] proposed a 256-bit multiplier for Virtex-6 using the
school-book method of multiplication. Both the factors,
low operating frequency and high latency have been im-
proved in our design which gives approximately 4 times
better results in time. The operating frequency of this
design is 40 MHz which is too low for high speed appli-
cations. Also our design has much better results in terms
of the area-delay product. Authors in [20] have designed
a multiplier for 256-bit operands and takes 700 ns for one
modular multiplication which is almost 2 times more than
proposed design. Although the implementations have been
performed for a different platform so direct comparison is
not possible, yet our design is better.

Chow et el. in [24] implemented a Montgomery modu-
lar multiplier that employs the Karatsuba algorithm along
with deep pipeline stages. The number of these pipeline

stages is not less than 18 while the exact number is not
given in the paper. Also the time for modular multipli-
cation is not provided. This architecture selects 32-bits
as the limb width at the bottom layer of Karatsuba mul-
tiplier. Therefore, it requires 4 clock cycles to complete
128-bit addition and 8 clock cycles for 256-bit addition. So
we estimate that the latency of this architecture is more
than 50 cycles. Our proposed design takes 29 clock cy-
cles to complete one modular multiplication. The design
in [24] operates at higher frequency than our proposed
design and performs a single modular multiplication in
less time. However latency is an important parameter
that can effect the actual performance in different appli-
cations like the scalar multiplication which is a basic op-
eration in ECC applications. ECC scalar multiplication
includes a series of modular multiplications. One scalar
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Table 4: Proposed FP Splitting and DFP Splitting Montgomery Multiplier

Platform Bit-Length LUTs Slice Registers Freq.(MHz) CCs DSPs Min Period(ns) Time(ns)
FP Splitting Montgomery Multiplier

Virtex-7

192 5157 4901 104.43 29 110 9.57 277.53
224 6566 4745 102.80 29 120 9.73 282.17
256 6688 5163 86.79 29 120 11.52 334.08
384 13784 8489 74.00 29 300 13.51 391.79
512 23511 11307 61.30 29 560 16.31 472.99

DFP Splitting Montgomery Multiplier
192 6085 4540 86.51 38 130 11.56 439.28
224 7186 5288 84.86 38 136 11.78 447.64
256 8287 6035 83.27 38 136 12.00 456.00
384 17336 9659 85.49 38 260 11.69 444.22
512 26519 13249 72.02 38 492 13.88 527.44

FP Splitting Montgomery Multiplier

Virtex-6

192 4869 4267 94.47 29 110 10.58 306.82
224 7462 4521 92.74 29 120 10.78 312.62
256 6688 5163 81.98 29 120 12.19 353.51
384 13784 8489 67.47 29 300 14.82 429.78
512 23511 11307 55.00 29 560 18.18 527.22

DFP Splitting Montgomery Multiplier
192 6085 4541 79.66 38 130 12.55 476.90
224 7186 5288 77.98 38 136 12.84 487.92
256 8287 6036 76.37 38 136 13.09 497.42
384 17336 9659 77.62 38 260 12.88 489.44
512 26519 13249 60.88 38 492 16.42 623.96

FP Splitting Montgomery Multiplier

Virtex-5

192 5602 4998 72.66 29 110 13.76 399.04
224 5557 4858 63.05 29 120 15.85 459.65
256 7324 5804 58.37 29 120 17.13 496.77
384 14708 8489 44.98 29 300 22.22 644.38
512 23511 11307 36.59 29 560 27.32 792.28

DFP Splitting Montgomery Multiplier
192 7022 4637 61.33 38 110 16.30 619.40
224 8282 5400 59.50 38 116 16.80 638.40
256 9544 6164 57.78 38 116 17.30 657.40
384 18256 9852 52.61 38 260 19.00 722.00
512 27768 13574 40.27 38 492 24.82 943.16

multiplication requires 1280 modular multiplications with
data-dependence. Hence our proposed design will consume
37120 clock cycles when computing the scalar multiplica-
tion as compared to this design that takes 64000 clock
cycles so our proposed architecture can perform better in
ECC applications. Furthermore our design is better in
terms of area-delay product. The design in [26] imple-
mented a modular multiplier based on the Karatsuba al-
gorithm. This design operates at a higher frequency than
our proposed design and consumes the same number of
clock cycles, hence has better results in time. However, our
proposed design is better in terms of hardware resources
utilized and area-delay product. The area-delay product
shows that the proposed design is better optimized when
both area and time are considered.

The results of the bit-wise implementations of the Mont-

gomery modular multiplications are also discussed. As
already stated that the bit-wise implementations use the
standard FPGA fabric and does not make use of any ded-
icated multipliers which can be seen from the implemen-
tation results. The design in [10] used interleaved mod-
ular multipliers for 224-bit and 256-bit operands running
at frequencies of 99 MHz and 96 MHz respectively. Time
for Montgomery multiplication and throughput have been
provided which shows that the proposed design is approxi-
mately 4 times better. A serial interleaved multiplier have
been proposed in [27] performing multiplication for 192-
bit, 224-bit and 256-bit. Implementation results are shown
in the table. For 256-bit, the proposed design proves to
be 4 times better. Similar work has been proposed in [28]
using parallel interleaved multiplier. The overall time pe-
riod have been approximately 2.5 times better. Also our
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Table 5: Performance Comparisons

Design Device
Bit-

DSP
Freq.

Latency
Time

Mbps
LUT

AL × T
Length (MHz) (ns) (k)

Proposed FP Splitting Montgomery Multiplier

[Proposed] Virtex-6
192 110 94.47

29
306 627 4.9 1.50

224 120 92.74 312 717 7.5 2.34
256 120 81.98 353 725 6.7 2.36

Block-wise Implementations
[14] Virtex-6 256 256 102.67 - - - - -
[15] Virtex-6 258 176 208 - - - - -
[18] Virtex-6 256 256 188 - - - - -
[19] Virtex-6 256 256 40.06 50 1248 205 24 29.9
[20] Virtex-2 Pro 256 256 45.68 32 700 316 1.42 -

Block-wise implementations employing Karatsuba algorithm
[24] Virtex-6 256 108 336 50 160 - 17.0 2.72
[26] Virtex-6 256 108 205.76 29 142 - 22.5 3.19

Bit-wise Implementations

[10] Virtex-6
224 - 99 - 1130 198 3.4 3.84
256 - 96 - 1300 196 3.9 5.07

[27]
192 - - 98 967 198 3.0 2.90

Virtex-6 224 - - 114 1160 193 3.4 3.94
256 - - 130 1360 188 3.9 5.30

[28] Virtex-6 256 - 166 - 790 324 6.3 4.97

Figure 7: Throughput Comparisons for 256-bit Montgomery multi-
pliers for Virtex-6

proposed design is better in terms of throughput and the
area-delay product when compared with all the designs
discussed above.

The throughput in terms of mega bits per second (Mbps)
is an important performance metric. The graph in the Fig-
ure 7 shows the throughput comparisons for 256-bit Mont-
gomery multipliers for Virtex-6 FPGAs. The throughput
for the proposed design is 725 Mbps which is more than
any of the designs presented here for the targeted device.

Similarly the Figure 8 shows the area-delay product of
the proposed design in comparison with other designs for
256-bit Montgomery multipliers. The area-delay product
for our proposed design is 2.36 which is less than any of
the designs presented here.

The power consumption of the proposed design is also
estimated using XPower Analyzer tool available in Xilinx

Figure 8: Area-delay Product Comparison for 256-bit Montgomery
multipliers for Virtex-6

ISE Design Suite 14.1. It is found that the power consump-
tion of the proposed multiplier for Virtex-6 is estimated to
be 6.402 W and 4.447 W for the bit-length of 256 and 224
respectively. These values are calculated for the default
operating parameters of the device such as temperature at
25◦C, Vccint at 1 V and Vccaux and Vcco at 2.5 V.

6. Conclusion

Montgomery modular multiplication plays an impor-
tant role when implementing cryptographic algorithms
on hardware platform. This paper presents an efficient
implementation of full-word Montgomery modular mul-
tiplication which is suitable to apply to ECC and RSA
cryptographic algorithms to promote their running speed.
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This work exploits the efficiency of Karatsuba-Ofman al-
gorithm to achieve a 256-bit multiplication using 120 DSP
blocks. Two techniques FP splitting and DFP splitting
have been designed to apply for the multiplication of the
sizes s = {192, 224, 256, 384, 512}. Implementation results
and comparisons show that the proposed scheme is better
than other schemes. The proposed Montgomery multiplier
is highly flexible as well and can be efficiently employed
in cryptographic processor for elliptic curves and pairing
based cryptography.
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