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Abstract: This paper presents an optimization method for solving the Power Economic Dispatch
(PED) problem of thermal generation units with multiple fuels and valve point loadings. The
proposed optimizer is a variant of Differential Evolution (DE) characterized as a Stud Differential
Evolution (SDE), which has been proposed earlier and implemented on a hydrothermal energy
system. In SDE, an operator named Stud Crossover (SC) is introduced in the conventional DE during
the trial vector updating process. In SC operator, a best vector gives its optimal information to all
other population members through mating. The proposed algorithm’s effectiveness to solve Multiple
Fuel PED problem, with and without Valve Point Loading Effects (VPLEs), has been validated by
testing it on 10 machine multiple fuel standard test systems having 2400 MW, 2500 MW, 2600 MW,
and 2700 MW load demands. The results depict the strength of SDE over various other methods in
the literature.

Keywords: power economic dispatch; multiple fuel machines; stud differential evolution;
stud crossover

1. Introduction

The Power Economic Dispatch (PED) is one of the essential steps in operation and planning of
a power system. It is an online function and is carried out after every fifteen minutes or on request
in control centers. It is a generation allocation problem that is defined as the determination of an
optimal generation schedule of machines subjected to the satisfaction of equality and in-equality
constraints. PED is non-convex in nature because of Valve Point Loading Effects (VPLEs), Multiple
Fuel Options (MFOs), and Prohibited Operating Zones (POZs) [1]. However, most of the time it is
addressed as a convex optimization problem solved by conventional techniques; e.g., equal incremental
cost criterion, gradient search method [2], Newton’s Method (NM), Lambda Iteration Method (LIM),
Lagrange Relaxation (LR) [3], Dynamic Programming (DP) [4], and Quadratic Programming (QP) [5],
etc. In such techniques, a simple quadratic function represents the machine curve that ignores the
practical constraints; e.g., MFOs, POZs, and VPEs. Therefore, these conventional techniques lack the
ability of solving highly complex, non-linear, and non-convex optimization problems and thereby fail
to find the optimal solution [6].

Thus, for solving such non-convex PED problems, Artificial Intelligence (AI) based approaches
were developed, examples include Genetic Algorithm (GA) [7], Particle Swarm Optimization (PSO) [8],
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fuzzy logic [9], Artificial Neural Network (ANN), Simulated Annealing (SA) [10], and Tabu Search
(TS) [11], etc. Many other nature inspired algorithms introduced in the literature of economic dispatch
include Artificial Bee Colony (ABC) [12,13], Cuckoo Search Algorithm (CSA) [14], Flower Pollination
Algorithm (FPA) [15], Bat Algorithm (BAT) [16], Lightning Flash Algorithm (LFA) [17], Ant Lion
Optimizer (ALO) [18], Distributed Auction Optimization Algorithm (DAOA) based on the gossip
communication mechanism [19], Stud Krill Herd (SKH) [20], Symbiotic Organisms Search (SOS)
algorithm [21], and Water Cycle Algorithm (WCA) [22], etc. These techniques are sometimes used
in a modified and hybridized manner, such as in Adaptive Cuckoo Search Algorithm (ACSA) [23],
Enhanced Lagrangian Artificial Neural Network(ELANN) [24], Modified Symbiotic Organisms Search
(MSOS) algorithm [25], Chaotic Bat Algorithm (CBA) [26], New particle swarm optimization with
local random search (NPSO_LRS) [27], Improved Genetic Algorithm with Multiplier Updating
(IGA_MU) [28], Conventional Genetic Algorithm with Multiplier Updating (CGA_MU) [28], and
Particle Swarm Optimization with Gaussian Mutation (PSO_GM) [29] to further optimize search time
and results. Evolutionary Algorithms (EAs) are also potential solution methodologies.

Differential Evolution (DE) [30] belongs to the class of EAs. It was first presented by Storn
and Price in 1997 [31]. Since it was developed, it has earned the reputation of an efficient global
optimization technique for solving non-linear and non-differentiable problems. Some of its advantages
include its robustness, simplicity, easy usage, and speed. DE comprises both evolutionary and
classic GA strategies. DE is an optimization technique that is most preferred by utility because of its
immediate response to practical problems. During the past few years, many variants of DE have also
been proposed to solve PED problem such as Self-adaptive DE (SaDE) [32], Improved DE (IDE) [33],
Shuffled DE (SDE) [34], hybrid of Continuous Greedy Randomized Adaptive Search Procedure with
DE (C-GRASP–DE) [35], hybrid of DE with Particle Swarm Optimization (DEPSO) [1], and many
others. DE has a global search capability but it is not always able to search the global optimum solution
due to pre-mature convergence. Additionally, its local search ability is also weak.

To cater to all these problems, a variant of DE named Stud Differential Evolution (SDE) has
been proposed in this paper. Stud behavior has been proposed and implemented earlier with some
evolutionary methods, such as GA [36] and KHA [37]. SDE was proposed by Haroon SS et al. in [38]
and was successfully applied for the solution of the emissions constrained hydrothermal energy
system problem. However, until now the effectiveness of stud incorporated DE (SDE) has not been
examined as a competent solution to convex/non-convex power economic dispatch problems as
well as a potential search approach, thereby rendering a research gap in the literature. Another
major reason behind the development of SDE is the incompetency of conventional DE in solving
complicated multi-modal problems efficiently as it does not always proceed to the global optimum
solution. Therefore, a Stud Crossover (SC) operator unlike the conventional crossover operator is
introduced that shares the information of an optimal vector with rest of the population vectors and
restarts the search through cross-over. The introduced SC operator helps to avoid the entrapment in
the local optimum and to find a global optimal solution. SC also empowers the local search ability of
the proposed algorithm. Hence with the two said techniques combined, SDE balances the exploitation
and exploration altogether, resulting in better performance towards complicated problems.

In this paper, a convex PED (with only MFOs) and a non-convex PED (with both MFOs and
VPLEs) have been mapped in SDE. Hence the effectiveness of SDE has been determined by applying
it on multiple fuel standard test systems comprising 10 generation-units with power demands of
2700 MW, 2600 MW, 2500 MW, and 2400 MW.

2. Problem Formulation

Mathematically, the PED problem is usually modeled by its objective function and constraints
related to generating units. The objective function of PED is to minimize the total fuel cost of all power
generation units while satisfying the power balance constraint and generation capacity constraint of
the power system.
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2.1. Objective Function

The objective of the PED problem is to minimize the overall power generation cost. Equation (1)
is a mathematical representation of the objective function of PED.

minFT =
N

∑
i=1

Fi (PGi ) (1)

where, FT is the overall power generation cost to be minimized, Fi(PGi ) is the fuel cost associated
with ith unit, PGi is the power generated from ith unit and N is the number of units. The fuel cost
equation of a simple PED problem, for an ideal power system, is a quadratic function and is given in
Equation (2).

Fi(PGi ) = ai + biPGi + ciP2
Gi

(2)

Here, ai, bi and ci are the fuel cost coefficients of the ith generator. The fuel cost curve for above
quadratic fuel cost equation has been shown in Figure 1. It depicts the fuel cost characteristics of a
simple economic dispatch problem.
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2.2. Constraints

The following are the constraints that are supposed to be satisfied while achieving the objective
function of PED.

2.2.1. Equality Constraint

The sum of power generated from all units is required to be equal to the total power demand as
represented through Equation (3).

N

∑
i=1

PGi = Pd (3)

2.2.2. In-Equality Constraint

The value of power generated by each unit should lie inside the maximum and minimum power
generation limit of that unit. Equation (4) presents this constraint of generation capacity.

Pmin
Gi

≤ PGi ≤ Pmax
Gi

(4)

where, PD is the total power demand, PGi is the power generated by ith unit and Pmin
Gi

and Pmax
Gi

are the
minimum and maximum power limits from ith generation unit respectively.
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2.3. Fuel Cost Equations

Practically, the objective function of PED problem is non-differentiable and non-convex in nature
because of VPLEs and MFOs. Therefore, the objective function of PED is modeled in terms of following
fuel cost equations for practical power systems.

2.3.1. Power Economic Dispatch considering Valve Point Loading Effects Only

The fuel cost equation for a PED problem with only VPLEs is as under,

Fi(PGi ) = ai + biPGi + ciP2
Gi
+
∣∣∣eisin( fi(Pmin

Gi
− PGi ))

∣∣∣ (5)

The fuel cost curve for such type of PED has been presented in Figure 2.
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2.3.2. Power Economic Dispatch Considering Multiple Fuel Options Only

The fuel cost equation for a PED problem with only MFOs, is as under in Equation (6).

Fi(PGi ) =



ai1 + bi1PGi + ci1P2
Gi

, f uel 1, Pmin
Gi

≤ PGi ≤ Pi1

ai2 + bi2PGi + ci2P2
Gi

, f uel 2, Pi1 ≤ PGi ≤ Pi2

,
,
,
,
,

aik + bikPGi + cikP2
Gi

, f uel k, Pik−1 ≤ PGi ≤ Pmax
Gi

(6)

where, Pmin
ik and Pmax

ik are the minimum and maximum power generations from ith unit consuming
kth fuel respectively. aik, bik and cik are the cost coefficients of the ith generating unit consuming kth
fuel. Figure 3 represents the fuel cost characteristics of a PED problem that considers only MFOs for
generating units.
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2.3.3. Power Economic Dispatch Considering Multiple Fuel Options and Valve Point Loading
Effects Together

The fuel cost equation for a PED problem modeling both MFOs and VPLEs, is as under in
Equation (7).

Fi(PGi ) =



ai1 + bi1PGi + ci1P2
Gi
+
∣∣∣ei1sin( fi1 (Pmin

Gi
− PGi ))

∣∣∣
f uel 1, Pmin

Gi
≤ PGi ≤ Pi1

ai2 + bi2PGi + ci2P2
Gi
+
∣∣∣ei2sin( fi2 (Pmin

Gi
− PGi ))

∣∣∣,
f uel 2, Pi1 ≤ PGi ≤ Pi2

,
,
,
,
,

aik + bikPGi + cikP2
Gi
+
∣∣∣eiksin( fik (Pmin

Gi
− PGi ))

∣∣∣,
f uel k, Pik−1 ≤ PGi ≤ Pmax

Gi

(7)

3. Differential Evolution (DE)

DE is a population-based algorithm in which mutation, crossover, and selection are its essential
components. It uses mutation as a main search strategy and employs the selection operator to direct
the search towards the potential solution region. It builds two arrays: a primary array and a secondary
array. Both arrays hold NP number of potential solutions and each solution contains D number of
parameters. These solutions are real valued vectors. In short, there is NP number of D-dimensional
vectors. All vectors collectively are called a population. The first array comprises of the current vector
population and the second array collects vectors that are selected for next generation.

Following is the stepwise description of DE.
Step 1: Randomly initialize the initial population PG

i (target vectors) of NP size and of D dimensions,
in a feasible range.

PSG =
[

PG
1 , PG

2 , . . . . . . . . . ..PG
Np

]
(8)

PG
i =

[
PG

1,i, PG
2,i, . . . . . . . . . ..PG

D,i

]
i = 1, 2, . . . . . . . . . .., Np (9)

where, PG
i is the ith potential solution and D is the Dth generating unit.

As the population is defined within permissible range,

P0
j,i = Pmin

j,i + δj ∗ (Pmax
j,i − Pmin

j,i ) (10)
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where, i = 1, 2, . . . . . . . . . .., Np j = 1, 2, . . . . . . . . . .., D
In Equation (10), D is the total number of decision parameters, Pmin

j,i and Pmax
j,i are the lower and

upper limits of the jth parameter respectively and δj is a random number generated in a range 0–1
which is new for every new value of j.
Step 2: Calculate the fitness value for all generated target vectors.
Step 3: Generate the mutant vector VG

i by perturbing a randomly selected vector PG
k with the difference

of two other randomly selected vectors PG
l and PG

m according to Rand/1/bin mutation strategy.
Step 4: Generate the trial vectors (UG

i ) through crossover by randomly recombining the parameters of
target vectors (PG

i ) and mutant vectors (VG
i ).

UG
j,i =


VG

j,i i f (ρj < CR) or j = D

PG
j,i Otherwise

(11)

Step 5: Calculate the fitness value for each trial vector generated in step 4.
Step 6: Perform 1-1 comparison between target vectors and trial vectors and select the vectors with
improved fitness value for new offspring.

PG+1
i =


UG

i i f f (UG
i ) > f (PG

i )

PG
i Otherwise

(12)

Step 7: Check whether desired fitness value is attained or maximum number of generations is achieved,
if yes then stop this optimization process, otherwise go back to step 3.

4. Stud Differential Evolution (SDE)

Because the conventional DE method suffers from premature convergence, it cannot always find
the optimal solution, especially for the systems with turbulent search space. Therefore, in this research
work, an improved strategy of crossover known as SC operator has been introduced in conventional
DE in order to improve its performance in solving the PED problem of thermal units with MFOs and
VPLEs. This improved version of DE called SDE is inspired by Stud GA. In SDE, to begin with, the
conventional DE is implemented to reduce the research space to the strategic area and afterwards the
SC operator is applied. SC operator is the heart of SDE and is utilized to mate all population vectors
with only the best vector or the most optimal vector called stud. It results in the generation of better
quality solutions instead of not so good solutions for upcoming offspring.

In SDE, the trial vectors (UG
i ) are generated for all potential solutions (vectors) of population by

recombining the parameters of best vector PG
best (instead of target vectors as in conventional DE) from

the current generation G and mutant vectors (VG
i ). The SC operator is represented by the following

mathematical expression.

UG
j,i =


VG

j,i i f (ρj < CR) or j = D

PG
best Otherwise

(13)

The mainframe of SDE operator and SC has been given in Algorithms 1 and 2 respectively.
Figure 4 depicts the flowchart of the proposed optimization method.

As we can see in Algorithm 1, to begin with, the optimal vector (stud) is selected as first parent
to mate with another parent vector to create a novel child/trial vector through crossover operator.
It must be ensured that stud should not be selected as second parent. Then the quality of a generated
child vector is determined by fitness function.
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Algorithm 1: Stud Differential Evolution (SDE)

Begin
Randomly initialize the population P (target vectors) of NP size and of D dimensions, in a feasible range
Set the generation counter G = 1
Allot suitable values to all other control parameters i.e., crossover rate CR, mutation probability F etc.
Calculate the fitness for all generated population vectors.
While G < Maximum Generation do
Implement regular DE from conventional mutational and crossover all the way to selection.
for I = 1: NP do
Perform Mutation and generate mutant vector VG

i
Perform the SC operator in Algorithm 2
end for i
Sort all the vectors and find the current best vector
G = G + 1;
end while
Display the best solution.
End.

Algorithm 2: Stud Crossover (SC) Operator

Begin
Perform the Selection
Select the Stud/Best vector PG

best for mating
Perform the Crossover
Generate trial vector UG

i , taking stud PG
best as first parent and mutant vector VG

i as a second parent
Calculate fitness of trial vector ( f (UG

i ))
If ( f (UG

i ) > f (PG
i )) do

Accept the generated trial vector UG
i for next generationelse

else
Accept the generated target vector PG

i for next generation
end if
End.

5. Simulation Results

The proposed SDE is implemented in a Visual C++ environment on various IEEE standard test
systems. For computer implementation of SDE, a Pentium IV computer with 1 GB of RAM and
2.0 GHz processor speed is used. Software used is Microsoft Visual C++ version 8.0. In order to
validate the effectiveness of the proposed SDE, it has been tested on two 10-machine multiple fuel
test systems. In one system, VPLEs has been considered (a 10-machine system with non-convex cost
function) while it has been neglected in the other one (a system with convex cost function). Further,
four case studies for various load demands of 2400 MW, 2500 MW, 2600 MW, and 2700 MW have been
conducted for each above mentioned system. The inputs to the proposed SDE are cost coefficients,
power generation limits of each unit and demand power while the outputs of the proposed algorithm
are power generation values from each unit, computation time, and type of fuel of each generating unit.

Parameter Selection: There are three main parameters in SDE that need to be predetermined; the
population size (NP), mutation factor (F) and crossover rate (CR).

5.1. System 1: 10 Machine Multiple Fuel Convex PED (without Valve Point Loading Effects)

This system consists of 10 generating units, considering only MFOs while ignoring the VPLEs.
The simulations for this system have been conducted for four different power demands of 2700 MW,
2600 MW, 2500 MW, and 2400 MW. The input data for the system has been taken from [39]. The
selected parameters for this system are: Population size = 100, No. of iterations = 200, Crossover rate
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(CR) = 0.6, Mutation factor (MF) = 0.5 and the results are presented after 30 repeated trials. Tables 1–4
indicate the power generation schedule and generation cost obtained by the proposed SDE for the load
demands of 2700 MW, 2600 MW, 2500 MW, and 2400 MW respectively. In Table 1, the effectiveness
of SDE in solving convex PED problem, for the power demand of 2700 MW, has been validated by
comparing its results with other optimizers in the literature such as Modified Shuffled Frog Leaping
Algorithm (MSFLA) [40], Modified Hopfield Neural Network (MHNN) [41], Self-adaptive Differential
Evolution (SaDE) [32], and Improved Evolutionary Programming (IEP) [42]. Similarly, Table 2 shows
the simulation result of SDE for the power demand of 2600 MW, compared with Hopfield Lagrange
Network (HLN) [43], Lamda-Iteration (LI) [43], and SaDE [32]. Table 3 depicts the cost comparison of
the proposed method to Modified Particle Swarm Optimization (MPSO) [44], Enhanced Augmented
Lagrange Hopfield Network (EALHN) [45], and Artificial Immune System (AIS) [46] against the power
demand of 2500 MW. Table 4 indicates the comparison of SDE simulation results among MHNN [41],
AIS [46], EALHN [45], and MPSO [44] for the power demand of 2400 MW.

Table 1. Cost comparison among various methodologies for System 1, Pd = 2700 MW.

Unit No. Fuel Types
Methods

MSFLA MHNN SaDE IEP SDE

P1 2 226.57 224.50 218.94 219.54 218.249988
P2 1 215.35 215.00 212.72 211.44 211.662614
P3 1 291.35 291.80 282.63 279.68 280.722785
P4 3 242.24 242.20 239.77 240.32 239.631553
P5 1 293.02 293.30 277.46 276.53 278.497228
P6 3 242.24 242.20 240.18 239.87 239.631562
P7 1 302.57 303.10 287.29 289.00 288.584580
P8 3 242.24 242.20 239.91 241.31 239.631491
P9 3 355.50 355.70 426.09 425.14 428.521600

P10 1 288.91 289.50 275.01 277.17 274.866600

Power Generated 2700.00 2699.70 2700.00 2700.00 2700.00
Total Cost 626.25 626.12 623.92 623.85 623.809154

Table 2. Cost comparison among various methodologies for System 1, Pd = 2600 MW.

Unit No. Fuel Used
Methods

HLN LI SaDE SDE

P1 2 209.7882 209.788 218.23 216.544182
P2 1 207.9078 207.9078 211.71 210.905752
P3 1 269.9145 269.9146 276.77 278.544078
P4 3 236.9782 236.9782 239.37 239.096668
P5 1 263.7247 263.7247 275.65 275.519445
P6 3 236.9782 236.9782 240.18 239.096668
P7 1 274.359 274.3591 285.99 285.717009
P8 3 236.9782 236.9782 238.16 239.096669
P9 1 402.7945 402.7945 341.90 343.493387
P10 1 260.5768 260.5767 272.04 271.986142

Power Generated 2600.00 2600.00 2600.00 2600.00
Total Cost 574.74 574.74 574.54 574.380823
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Table 3. Cost comparison among various methodologies for System 1, Pd = 2500 MW.

Unit No. Fuel Used
Methods

MPSO EALHN AIS SDE

P1 2 206.5 206.5188 205.88 206.519016
P2 1 206.5 206.4573 206.33 206.457317
P3 1 265.7 265.7392 266.48 265.739085
P4 3 236.0 235.9531 235.79 235.953146
P5 1 258.0 258.0178 256.87 258.017644
P6 3 236.0 235.9531 236.65 235.953163
P7 1 268.9 268.8636 269.2 268.863542
P8 3 235.9 235.9531 235.51 235.953149
P9 1 331.5 331.4876 332.23 331.487723
P10 1 255.1 255.0564 255.02 255.056214

Power Generated 2500.00 2500.00 2500.00 2500.00
Total Cost 526.239 526.239 526.240 526.238760

Table 4. Cost comparison among various methodologies for System 1, Pd = 2400 MW.

Unit No. Fuel Used
Methods

MHNN AIS EALHN MPSO SDE

P1 1 192.7 189.683 189.7397 189.7 189.740527
P2 1 203.8 202.40 202.3427 202.3 202.342694
P3 1 259.1 253.814 253.8954 253.9 253.895318
P4 3 195.1 233.019 233.0456 233.0 233.045560
P5 1 248.7 241.94 241.8299 241.8 241.829619
P6 3 234.2 233.063 233.0456 233.0 233.045548
P7 1 260.3 253.374 253.2752 253.3 253.275055
P8 3 234.5 232.851 233.0456 233.0 233.045563
P9 1 324.7 320.452 320.3831 320.4 320.383139
P10 1 246.8 239.404 239.3973 339.4 239.396978

Power Generated 2399.8 2400.00 2399.80 2400 2400
Total Cost 487.87 481.723 481.72300 481.723 481.722624

The best generation costs and computational times of the proposed method is compared to those
from HNN [41], SaDE [32], IEP [42], ELANN [24], EALHN [45], MPSO [44], RCGA [47], DE [48], and
LI [43] for all power demands of 2400 MW, 2500 MW, 2600 MW, and 2700 MW, as shown in Table 5
(i, ii, iii, iv) respectively. It is evident from the table that the total fuel cost obtained by the proposed
SDE is less than all other algorithms except the LI for 2400 MW, HNN for 2500 MW and 2600 MW
cases. However, computational time of the proposed SDE is shorter than LI and HNN for all cases.
Additionally, HNN fails to meet the power balance constraint in all cases. As for the 2700 MW case, the
simulation results of SDE are better than all mentioned algorithms. The convergence characteristics
of the proposed method in solving the convex PED problem (with MFOs and without VPLEs), for
2600 MW, 2500 MW, and 2400 MW load demands, are shown in Figure 4 while those for 2700 MW
load demand are presented in Figure 5.
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Table 5. Comprehensive comparison of total fuel cost and computation time for system 1 (without
valve point loading effects), Pd = 2400 MW, 2500 MW, 2600 MW and 2700 MW.

(i) (ii)

2400 MW 2500 MW

Methods Total Power Min. Cost CT Methods Total Power Min. Cost CT

HNN [41] 2399.80 481.8700 ~60 IEP [42] 2500.00 526.4000 NR
SaDE [32] 2400.00 481.8628 NR SaDE [32] 2500.00 526.3232 NR
IEP [42] 2400.00 481.7790 NR ELANN [24] 2500.00 526.2700 12.25

ELANN [24] 2400.00 481.7400 11.53 DE [48] 2500.00 526.2390 NR
EALHN [45] 2400.00 481.7230 0.008 EALHN [45] 2500.00 526.2390 0.006
MPSO [44] 2400.00 481.7230 NR LI [43] 2500.00 526.2390 2.508
RCGA [47] 2400.00 481.7230 49.92 RCGA [47] 2500.00 526.2390 49.92

DE [48] 2400.00 481.7230 NR MPSO [44] 2500.00 526.2390 NR
LI [43] 2399.99 481.7217 7.84 HNN [41] 2499.80 526.1300 ~60

SDE 2400.00 481.7226 2.50 SDE 2500.00 526.2387 2.43

(iii) (iv)

2600 MW 2700 MW

Methods Total Power Min. Cost CT Methods Total Power Min. Cost CT

LI [43] 2600.00 574.7412 6.871 HNN [41] 2599.80 626.1200 ~60
HLN [43] 2600.00 574.7413 0.152 SaDE [32] 2700.00 623.9225 NR
SaDE [32] 2600.00 574.5380 NR ELANN [24] 2700.00 623.8800 21.36
IEP [42] 2600.00 574.4730 NR IEP[42] 2700.00 623.8510 NR

ELANN [24] 2600.00 574.4100 ~9.99 RCGA [47] 2700.00 623.8092 44.56
RCGA [47] 2600.00 574.3960 33.57 DE [48] 2700.00 623.8090 NR

DE [48] 2600.00 574.3810 NR LI [43] 2699.99 623.8089 6.221
EALHN [45] 2600.00 574.3810 0.005 MPSO [44] 2700.00 623.8090 NR
MPSO [44] 2600.00 574.3810 NR CGA-MU [28] 2700.00 623.8095 19.42
HNN [41] 2599.80 574.2600 ~60 IGA-MU [28] 2700.00 623.8093 5.27

SDE 2600.00 574.3808 2.04 SDE 2700.00 623.8092 2.2
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Figure 5. Convergence-characteristics of SBE algorithm for system 1 (without valve point loading
effects), Pd = 2400 MW, 2500 MW, 2600 MW.

5.2. System 2: 10 Machine Multiple Fuel Non-Convex PED (with Valve Point Loading Effects)

This system considers both MFOs and the VPLEs. The simulations for this system have also been
conducted for 2700 MW, 2600 MW, 2500 MW and 2400 MW power demands. The selected parameters
for this system are: Population size = 200, No. of iterations = 800, Crossover rate (CR) = 0.6, Mutation
factor (MF) = 0.5 and the results are presented after 30 trials. Table 6 shows the results obtained
from the proposed SDE in solving non-convex PED problem for the 2700 MW power demand and
are compared to other optimizers in literature such as Improved Genetic Algorithm with Multiplier
Updating (IGA_MU) [28], Modified Shuffled Frog Leaping Algorithm (MSFLA) [40], Particle Swarm
Optimization (PSO) [49], conventional DE [49], Real-coded Genetic Algorithm (RGA) [49], New Particle
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Swarm Optimization with Local Random Search (NPSO-LRS) [50], Back-tracking Search Algorithm
(BSA) [51], Cuckoo Search Algorithm with Cauchy distribution (CSA-Cauchy) [52] and BAT [16].
Table 7 shows the simulation results of SDE for the power demand of 2600 MW and are compared
with conventional PSO [49], RGA [49], DE [49], MSFLA [40], Global-best Harmony Search (GHS) [40],
BAT [16], SaDE [32]. In Table 8, SDE simulation results have been compared with DE [49], RGA [49],
PSO [49] and Adaptive Simulated Annealing (ASA) [53] for 2500 MW load demand. For 2400 MW
load demand, SDE outperforms all mentioned algorithms same as all other power demands (2700 MW,
2600 MW and 2500 MW), as illustrated by Table 9. Table 10 shows optimal solutions for different
values of Crossover ratio (CR).

For the power demand of 2700 MW, the comparison of the proposed SDE with various
optimization techniques in literature been performed in Table 10 comprising maximum, average
and minimum generation costs, standard deviation and computational time of the reported algorithms.
From all above result comparisons, it is clearly found that the proposed SDE provides high quality
results compared to all other methodologies. The convergence characteristics of the proposed optimizer
while solving the non-convex PED problem (with both MFOs and VPLEs) for 2600 MW, 2500 MW and
2400 MW load demands, are shown in Figure 6 while those for 2700 MW load demand are presented
in Figure 7. It is also clear from the figures that SDE can converge to high quality solutions within
reasonable time. It is robust and can converge to optimal solution at early iterations. The distribution
of power-generation costs of the proposed SDE, for 2700 MW power demand during 30 repeated runs,
has been illustrated in Figure 8. It is evident from the figure that the optimal generation cost has been
achieved at 19th run by SDE. Figure 9 shows the cost distribution around 30 runs for system 2. Table 11
shows the comparison of the results obtained by SDE with other approaches of literature for all the
power demands and Table 12 presents the summary of simulation results achieved by the proposed
SDE while solving both convex and non-convex PED problems with four power demands of 2700 MW,
2600 MW, 2500 MW and 2700 MW separately.

Table 6. Cost comparison among various methodologies for System 2, Pd = 2700 MW.

Unit
No.

Fuel
Used

Methods

IGA_MU MSFLA PSO DE RGA NPSO-LRS BSA CSA-Cauchy BAT SDE

P1 2 219.13 215.50 219.9962 218.2499 220.9376 223.33 218.58 218.1322 217.3232 218.593998
P2 1 211.16 210.72 212.7648 211.6626 212.6096 212.19 211.22 211.4116 209.9266 211.464175
P3 1 280.66 284.71 283.7391 280.7228 283.5811 276.21 279.56 281.6867 284.5552 280.657064
P4 3 238.48 239.77 240.5205 239.6315 240.0089 239.41 239.50 238.7456 237.2677 239.639428
P5 1 276.42 286.45 282.3127 278.4972 282.8920 274.64 279.97 279.8622 279.9804 279.934520
P6 3 240.47 240.18 240.5387 239.6315 240.4739 239.79 241.12 240.3328 240.1984 239.639428
P7 1 287.74 278.87 293.0846 288.5845 292.9792 285.53 289.80 287.7978 290.0943 287.727493
P8 3 240.76 242.06 240.2886 239.6315 240.1989 240.63 240.58 238.3435 238.3427 239.639428
P9 3 429.34 425.32 406.9797 428.5216 406.9988 429.26 426.89 427.8687 425.717 426.835856
P10 1 275.85 276.43 279.7752 274.8667 279.3199 278.65 272.80 275.8188 276.5845 275.868609

Power Generated 2700.00 2700.00 2700.00 2700.00 2700.00 2700.00 2700.00 2700.0 2700.00 2700.00
Total Cost 624.52 624.12 624.5074 624.5146 624.5081 624.13 623.90 623.8566 623.8425 623.826575

Table 7. Cost comparison among various methodologies for System 2, Pd = 2600 MW.

Unit No. Fuel Used
Methods

PSO RGA DE MSFLA GHS BAT SaDE SDE

P1 2 - - - 218.59 209.35 218.1376 219.99 216.539998
P2 1 - - - 203.05 207.99 212.1547 212.76 210.721482
P3 1 - - - 271.58 269.63 279.6484 283.74 278.640638
P4 3 - - - 236.41 236.95 239.552 240.52 238.698832
P5 1 - - - 276.43 265.48 271.4263 282.31 276.157152
P6 3 - - - 241.92 235.88 237.2423 240.53 238.967574
P7 1 - - - 287.73 273.51 287.7358 293.08 285.356480
P8 3 - - - 240.85 237.76 236.4615 240.29 238.564461
P9 1 - - - 344.20 403.33 339.8086 406.98 343.645968

P10 1 - - - 279.23 260.11 277.8228 279.78 272.707417

Power Generated 2600.00 2600.00 2600.00 2600.00 2700.00 2600.00 2600.00 2600.00
Total Cost 575.161 575.161 575.175 574.89 574.79 574.5609 574.54 574.387064
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Table 8. Cost comparison among various methodologies for System 2, Pd = 2500 MW.

Generation Schedule for Pd = 2500 MW and Non-Convex Cost

Unit No. SDE
P1 206.269999
P2 206.512887
P3 266.542078
P4 236.414526
P5 258.350235
P6 236.280155
P7 268.759386
P8 235.608300
P9 331.467106
P10 253.795328

Power Generated 2500.00
Total Cost 526.245078

Comparison of Results for Pd = 2500 MW and Non-Convex Cost
Method Used DE RGA PSO ASA SDE

Total Cost 527.03600 527.0189 527.01850 526.32310 526.245533

Table 9. Cost comparison among various methodologies for System 2, Pd = 2400 MW.

Generation Schedule for Pd = 2400 MW and Non-Convex Cost

Unit No. SDE
P1 188.517831
P2 202.551856
P3 253.435305
P4 232.786510
P5 240.439406
P6 233.189623
P7 254.533306
P8 233.055252
P9 320.395414

P10 241.095497

Power Generated 2400.00
Total Cost 481.734808

Comparison of Results for Pd = 2400 MW and Non-Convex Cost
Methods Used ACO DE PSO RGA ASA SDE

Total Cost 482.5267 482.5275 482.5088 482.5114 481.86290 481.734808

Table 10. Simulation results for various values of Crossover ratio.

Power Demand (MW)
Crossover Rate (CR)

0.5 0.6 0.7

2400 481.747921 481.734808 481.764849
2500 526.253282 526.245533 526.277145
2600 574.402910 574.387064 574.464175
2700 623.832350 623.826575 623.843516
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Table 11. Comprehensive comparison of simulation results, standard deviation and computation time
for system 2 (with valve point loading effects), Pd = 2700 MW.

Methods Min. Cost Ave. Cost Max. Cost St. Deviation CT (s)

CGA-MU [28] 624.7193 627.6087 633.8652 NR 25.65
IGA-MU [28] 624.5178 625.8692 630.8705 NR 7.14

DE (a) [49] 624.5146 624.5246 624.5458 0.0077 2.8236
RGA (a) [49] 624.5081 624.5079 624.5088 2.9476 × 10−5 4.1340
PSO (a) [49] 624.5074 624.5074 624.5074 1.9691 × 10−13 3.3852

GA [7] 624.5050 624.7419 624.8169 0.1005 18.3
PSO_GM [29] 624.3100 625.09 624.67 0.16 NR

TSA [7] 624.3078 635.0623 624.8285 1.1593 9.71
PSO_LRS [27] 624.2297 625.7887 628.3214 NR 0.93

CPSO [29] 624.1700 624.78 624.55 0.13 NR
NPSO [27] 624.1624 625.218 627.4237 NR 0.41

NPSO_LRS [27] 624.1273 624.9985 626.9981 NR 1.08
MSFLA [40] 624.11569 624.8958 628.3428 NR NR
APSO [54] 624.0145 624.8185 624.8185 NR 0.52

PSO (b) [30] 624.0120 624.2055 624.4376 0.0889 0.308
CBPSO_RVM [29] 623.9600 624.29 624.08 0.06 NR

DE (b) [30] 623.9280 624.0068 624.0653 0.0271 0.625
BSA [51] 623.9016 623.9757 624.0838 NR NR
ACO [55] 623.9000 624.3500 624.7800 NR 8.35

GA_G [56] 623.8900 625.21 635.30 NR NR
GA_MGC [56] 623.8900 624.72 626.94 NR NR

GA_C [56] 623.8800 624.53 626.95 NR NR
GA_BGC [56] 623.8800 624.14 626.51 NR NR

QPSO [30] 623.8766 623.9639 624.4163 0.0688 0.315
DE_ALM [57] 623.8716 626.1298 642.7812 NR 12.375

CSA [58] 623.8684 623.9495 626.3666 0.2438 1.587
CSA_Cauchy [52] 623.8566 624.1160 626.3440 0.7395 2.1
CSA_Gauss [52] 623.8564 624.3618 626.3474 0.9826 2.2

GHS [40] 623.84914 624.1341 625.3157 NR NR
CQPSO [30] 623.8476 623.8652 623.8885 0.0151 0.318

SFLA-GHS [40] 623.84065 623.9521 624.7804 NR NR
DSPSO_TSA [7] 623.8375 623.8625 623.9001 0.0106 3.44

SQPSO [30] 623.8319 623.8440 623.8605 0.0107 0.324
IODPSO_G [59] 623.83 623.84 623.83 0.01 NR
IODPSO_L [59] 623.83 623.83 623.83 0.00 NR

SADE_ALM [57] 623.8278 624.7864 634.8313 NR 17.032
SDE 623.826575 623.833894 623.8412 3.62 × 10−3 ~10
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Figure 6. The convergence characteristics of the proposed for system 1 (without valve point loading
effects), Pd = 2700 MW.
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Figure 7. Convergence-characteristics of SBE algorithm for system 1 (without valve point loading
effects), Pd = 2400 MW, 2500 MW, 2600 MW.
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Figure 8. The convergence characteristics of the proposed for system 2 (with valve point loading
effects), Pd = 2700 MW.
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Table 12. Summary of simulation results achieved by SDE for both convex and non-convex PED.

Units
Pd = 2700 MW Pd = 2600 MW Pd = 2500 MW Pd = 2400 MW

Convex Nonconvex Convex Nonconvex Convex Nonconvex Convex Nonconvex

1 218.249988 218.593998 216.544182 216.539998 206.519016 206.269999 189.740527 188.517831
2 211.662614 211.464175 210.905752 210.721482 206.457317 206.512887 202.342694 202.551856
3 280.722785 280.657064 278.544078 278.640638 265.739085 266.542078 253.895318 253.435305
4 239.631553 239.639428 239.096668 238.698832 235.953146 236.414526 233.045560 232.786510
5 278.497228 279.934520 275.519445 276.157152 258.017644 258.350235 241.829619 240.439406
6 239.631562 239.639428 239.096668 238.967574 235.953163 236.280155 233.045548 233.189623
7 288.584580 287.727493 285.717009 285.356480 268.863542 268.759386 253.275055 254.533306
8 239.631491 239.639428 239.096669 238.564461 235.953149 235.608300 233.045563 233.055252
9 428.521600 426.835856 343.493387 343.645968 331.487723 331.467106 320.383139 320.395414

10 274.866600 275.868609 271.986142 272.707417 255.056214 253.795328 239.396978 241.095497
TP (MW) 2700.00 2700.00 2600.00 2600.00 2500.00 2500.00 2400.00 2400.00
TC ($/h) 623.809154 623.826575 574.380823 574.387064 526.238760 526.245533 481.722624 481.734808

6. Conclusions

In this research, SDE was mapped in a C++ programming environment and tested on standard test
systems available in the literature. On the basis of the results achieved by computer implementation of
the C++ SDE application, it can be seen that SDE has a reduced generation cost and it can be concluded
that the proposed algorithm can effectively and efficiently explore the solution space and that SDE is
one of the promising optimization techniques.

Thus, the following conclusions can be made:

• SDE is a potential solution methodology for the PED problem, as it addresses the convex and
non-convex PED equally.

• Results obtained from SDE are better in comparison with the current research available, which
indicates the promise of the approach.

• SDE can easily be further modified and hybridized with other optimization techniques because it
has fewer control parameters.

The presented research work has been entirely computer oriented and the main motivation was
to develop a software application using C++ based on SDE.

Author Contributions: The idea of the paper was conceived by N., S.S.H., S.A. and I.A.S. All of the listed authors
designed the simulation and helped in coding and analyzed the data especially N., S.S.H. and corresponding
author. The paper was written by all authors and was reviewed many times by all of them especially N., S.S.H.,
corresponding author, A.W., M.A., M.Y. and I.A.
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Nomenclature

N Total no. of units
PGi Power from ith unit
Fi(PGi ) Fuel cost associated with ith unit
Pd Total power demand
Pmin

Gi
Minimum power generation from ith unit

Pmax
Gi

Maximum power generation from ith unit
Pmin

ik Minimum power generation from ith unit consuming kth fuel
Pmax

ik Maximum power generation from ith unit consuming kth fuel
FT Total cost of power generation
aik, bik and cik Cost coefficients of the ith generating unit consuming kth fuel
Optimization Techniques
AIS Artificial Immune System
APSO Adaptive particle swarm optimization
ASA Adaptive Simulated Annealing
BSA Back-tracking Search Algorithm
CBPSO_RVM Combined particle swarm optimization with real-valued mutation
CGA_MU Conventional Genetic Algorithm with Multiplier Updating

C-GRASP–DE
Continuous Greedy Randomized Adaptive Search Procedure with Differential
Evolution

CPSO Combinatorial particle swarm optimization
CSA-Cauchy Cuckoo Search Algorithm with Cauchy distribution
CSA-Gauss Cuckoo Search Algorithm with Gaussian distribution
DEPSO Differential Evolution with Particle Swarm Optimization
DSPSO_TSA Distributed Sobol Particle Swarm Optimization and Tabu Search Algorithm
EALHN Enhanced Augmented Lagrange Hopfield Network
GA_BGC Genetic Algorithm with best of Gaussian and Cauchy mutations
GA_C Genetic Algorithm GA with Cauchy mutation
GA_G Genetic Algorithm with Gaussian mutation
GA_MGC Genetic Algorithm with mean of Gaussian and Cauchy mutations
GHS Global-best Harmony Search
HLN Hopfield Lagrange Network
HNN Hopfiled Neural Network
IDE Improved Differential Evolution
IEP Improved Evolutionary Programming
IGA_MU Improved Genetic Algorithm with Multiplier Updating
IODPSO_G improved orthogonal design particle swarm optimization with global star structure
IODPSO_L improved orthogonal design particle swarm optimization with local ring structure
LI Lamda-iteration
MHNN Modified Hopfield Neural Network
MPSO Modified Particle Swarm Optimization
MSFLA Modified Shuffled Frog Leaping Algorithm
NPSO New particle swarm optimization
QPSO Quantum-behaved particle swarm optimization
RCGA Real-coded Genetic Algorithm
SADE_ALM Self-adaptive Differential Evolution method with Augmented Lagrange Multiplier
SDE Stud Differential Evolution
SFLA-GHS shuffled frog leaping algorithm with global-best harmony search algorithm



Energies 2018, 11, 1393 18 of 20

References

1. Sayah, S.; Hamouda, A. A new hybrid heuristic algorithm for the nonconvex economic dispatch problem.
In Proceedings of the 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B),
Boumerdes, Algeria, 29–31 October 2017; pp. 1–6.

2. Wood, A.J.; Wollenberg, B.F. Power Generation, Operation, and Control; John Wiley & Sons: Hoboken, NJ,
USA, 2012.

3. Hindi, K.S.; Ab Ghani, M. Dynamic economic dispatch for large scale power systems: A lagrangian relaxation
approach. Int. J. Electr. Power Energy Syst. 1991, 13, 51–56. [CrossRef]

4. Liang, Z.-X.; Glover, J.D. A zoom feature for a dynamic programming solution to economic dispatch
including transmission losses. IEEE Trans. Power Syst. 1992, 7, 544–550. [CrossRef]

5. Papageorgiou, L.G.; Fraga, E.S. A mixed integer quadratic programming formulation for the economic
dispatch of generators with prohibited operating zones. Electr. Power Syst. Res. 2007, 77, 1292–1296.
[CrossRef]

6. Victoire, T.A.A.; Jeyakumar, A.E. Deterministically guided pso for dynamic dispatch considering valve-point
effect. Electr. Power Syst. Res. 2005, 73, 313–322. [CrossRef]

7. Khamsawang, S.; Jiriwibhakorn, S. Dspso–tsa for economic dispatch problem with nonsmooth and
noncontinuous cost functions. Energy Convers. Manag. 2010, 51, 365–375. [CrossRef]

8. Ab Ghani, M.R.; Hussein, S.T.; Ruddin, M.; Mohamad, M.; Jano, Z. An examination of economic dispatch
using particle swarm optimization. MAGNT Res. Rep. 2015, 3, 193–209.

9. Duman, S.; Yorukeren, N.; Altas, I.H. A novel modified hybrid psogsa based on fuzzy logic for non-convex
economic dispatch problem with valve-point effect. Int. J. Electr. Power Energy Syst. 2015, 64, 121–135.
[CrossRef]

10. Júnior, J.d.A.B.; Nunes, M.V.A.; Nascimento, M.H.R.; Rodríguez, J.L.M.; Leite, J.C. Solution to economic
emission load dispatch by simulated annealing: Case study. Electr. Eng. 2017, 1–13. [CrossRef]

11. Lin, W.-M.; Cheng, F.-S.; Tsay, M.-T. An improved tabu search for economic dispatch with multiple minima.
IEEE Trans. Power Syst. 2002, 17, 108–112. [CrossRef]
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