
Arab J Sci Eng (2018) 43:4057–4070
https://doi.org/10.1007/s13369-017-2803-9

RESEARCH ARTICLE - SPECIAL ISSUE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Impact of Feature Selection Algorithms on Blind Image Quality
Assessment

Imran Fareed Nizami1 · Muhammad Majid2 · Hammad Afzal3 ·
Khawar Khurshid1

Received: 5 April 2017 / Accepted: 6 August 2017 / Published online: 21 August 2017
© King Fahd University of Petroleum & Minerals 2017

Abstract Blind image quality assessment (BIQA) is a chal-
lenging task in real-world problems due to unavailability of
reference images. The performance of BIQA techniques is
highly dependent on features used to assess the image qual-
ity. In the literature, different BIQA techniques have been
proposed using a two-step approach, i.e., feature extraction
in different domains and prediction of quality score using
extracted features. However, optimum feature selection for
these techniques has not been explored. This paper inves-
tigates the impact of feature selection algorithms on the
performance of BIQA techniques. In contrast to existing
techniques, the proposed methodology follows a three-step
approach. Firstly, features are extracted using existing BIQA
techniques. In the second step, feature selection algorithm
is applied on the extracted features to reduce the number of
features. The selected features are then utilized for prediction
of a quality score in the third step. The proposed approach is
evaluated for sixBIQA techniques using five commonly used
feature selection algorithms. Experimental results show that

B Imran Fareed Nizami
12phdinizami@seecs.edu.pk

Muhammad Majid
m.majid@uettaxila.edu.pk

Hammad Afzal
hammad.afzal@mcs.edu.pk

Khawar Khurshid
khawar.khurshid@seecs.edu.pk

1 School of Electrical Engineering and Computer Science,
National University of Sciences and Technology, Islamabad,
Pakistan

2 Department of Computer Engineering, University of
Engineering and Technology Taxila, Taxila, Pakistan

3 Military College of Signals, National University of Sciences
and Technology, Islamabad, Pakistan

the feature selection algorithms not only reduces the number
of features but also improves the performance of the state-
of-the-art BIQA techniques.
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1 Introduction

With the development of communication systems and wide-
spread use of handheld devices, exchange of images has
become a common practice. Distortion in images is intro-
duced due to imperfections in acquisition, compression for
data reduction and transmission over lossy channels [1].
More than one billion images are shared over the Internet
everyday; therefore, evaluating the quality of images has
gained importance. Image quality assessment (IQA) aims
to evaluate the quality of the image, which correlates with
human perception. IQAs are broadly divided into two cat-
egories, i.e., subjective and objective quality assessment.
Assessment performed by human observers is termed as sub-
jective image quality assessment [2]. Hence, objective IQA
is required that mimic the behavior of human observer to
predict the quality score of images, which correlates with the
mean observer score.

Objective image quality assessment techniques are
broadly categorized into three groups, namely blind image
quality assessment (BIQA), reduced reference (RR) and full
reference (FR) IQA [3]. FR-IQA techniques are purelymath-
ematical and measure the error pixel-wise that does not offer
a proper contemplation of visual perception [4]. Peak signal-
to-noise ratio, mean square error, structural similarity index
and feature similarity index are few of the commonly used
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quality measures for FR-IQA [5]. In FR-IQA, both the ref-
erence and distorted images are required, thus limiting its
application [6–11]. RR-IQA techniques attempt to estimate
the perceived quality of an image using limited informa-
tion about the reference and the distorted image. Similar to
FR-IQA, RR-IQA techniques do not account the human per-
ception while measuring the image quality [12–15]. The aim
of BIQA techniques is to develop an insight into factors that
can be used to model image quality perceptually without the
reference image [1,16–21].

Natural images are highly structured and possess certain
properties that are affected in the presence of distortion. Such
properties are known as natural scene statistics (NSS) [22].
NSS- based IQA techniques assess the quality of images by
measuring the deviation of NSS features of distorted images
from that of the natural images. Various BIQA techniques
have been proposed in the literature that assess the quality
score of images using natural scene statistics (NSS)-based
features from different domains [16,18,19,22–29]. Most of
these BIQA techniques convert the color images to gray scale
and then compute the quality score of the image. The con-
version from color to gray scale makes the BIQA techniques
computationally efficient and also applicable for grayscale
images.

In [23], wavelet transform is used to extract features over
three scales and three orientations and regression model
to determine the quality score of images. In [24], discrete
cosine transform (DCT)-based features are extracted for the
assessment of image quality. In [25], local normalization of
luminance features and their products in spatial domain are
used over two scales for BIQA. In [27], spatial and spectral
entropies are extracted by dividing the image into patches of
8× 8. These features are given as an input to support vector
regression (SVR) for the prediction of image quality score.
Statistical features in curvelet domain are extracted based on
the maximum value of log-histograms and the energies of
scale and orientation [1]. In [21], NSS-based features using
shearlet transform are used for BIQA, which localize dis-
tributed discontinuities and makes it suitable for assessing
the quality score. The quality score is computed by taking
the difference between the mean and standard deviation of
natural and distorted images.

Recently, few BIQA techniques have been proposed that
do not require training. In [30], spatial domain features are
extracted, which are mapped to a multivariate gaussian dis-
tribution (MVG). The quality score is predicted based on the
distance between distorted and natural imagesMVG. In [17],
quality aware features are extracted in a two-step framework.
Firstly, the distortion type is identified, and then, the qual-
ity score is assessed based on label transfer using annotated
images.

The performance of BIQA techniques deteriorates in
terms of low correlation with the subjective mean opinion

score if redundant and irrelevant NSS features are extracted.
To the best of our knowledge, feature selection that removes
redundant and irrelevant features for BIQA has not been
explored. Therefore, feature selection algorithm is required
that reduces the number of features and improves the perfor-
mance of BIQA techniques. This paper proposes a three-step
approach for BIQA. In the first step, existing BIQA tech-
niques are used for feature extraction. In the second step,
feature selection is performed by five commonly used feature
selection algorithms, which reduces the number of features
for all distortion types for a particular BIQA technique.
Lastly, selected features are used for the assessment of image
quality. The contributions of this paper are

1. Impact of feature selection algorithms on state-of-the-art
BIQA techniques are explored.

2. Feature selection step used in BIQA shows better perfor-
mance in terms of higher correlation with mean observer
scores and lower root-mean-square error values.

3. Feature selection algorithm reduces the number of fea-
tures for existing BIQA techniques, which result in less
computational expense and execution time.

The rest of the paper is organized as follows. Section 2 dis-
cuses the proposed methodology in detail. Section 3 presents
the experimental results of five feature selection algorithms
on six BIQA techniques. Finally, conclusion is given in
Sect. 4.

2 Proposed Methodology

Figure 1 shows the proposed methodology for BIQA, which
follows a three-step approach. In the first step, N number
of features, i.e., FE , are extracted from color or grayscale
image using existing BIQA techniques. Feature selection is
performed in the second step that selects M number of fea-
tures, i.e., FS from FE , where M ≤ N . In the last step,
features are employed for the computation of image quality
score. The detail of each step is as follows.

2.1 Feature Extraction

In the first step, features are extracted using BIQA tech-
niques. Six state-of-the-art BIQA techniques are used in this
paper. All the techniques used in this work are based on NSS.
These techniques assess the quality score of images based on
deviation of NSS properties from the natural images, repre-
sented by the respective features. In this work, the images
used for quality assessment are color as well as gray scale.
These images are distorted by different types of distortions,
namely JPEG, JPEG2000, white noise and Gaussian blur.
The distortion in each image is introduced for four different
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Fig. 1 Proposed methodology for BIQA using feature selection algorithm

levels, i.e., from low distorted to highly distorted image. The
details of each BIQA technique used are as follows.

2.1.1 Distortion Identification-Based Image Verity and
INtegrity Evaluation (DIIVINE)

DIIVINE extracts image features for BIQA in the first step
and utilizes a regression model for predicting the quality
score of image in the second step [22]. The technique uses
a loose wavelet transform based on steerable pyramids to
extract NSS features from images. The wavelet transform is
considered across two scales and six orientations. Five group
of features, namely spatial correlation, correlations across
scales, orientation selective statistics, scale and orientation
selective statistics and across orientation statistics, consti-
tute a feature vector of length 88. DIIVINE uses these 88
features as input to SVR for the estimation of quality score.

2.1.2 Spatial–Spectral Entropy-Based Quality (SSEQ)

In [27], a hybrid technique for BIQA is introduced. The
images are analyzed at three scales, i.e, low, middle and high.
Bicubic interpolation is used during downsampling to avoid
aliasing. SSEQ uses spatial and spectral entropies, which are
computed by dividing the image into 8 × 8 patches. Then,
features are sorted in ascending order and 60% of the central
elements are selected for BIQA. In SSEQ, first the distor-
tion type affecting the image is identified using 12 features,
and then, these features are given as input to SVR for the
computation of quality score.

2.1.3 Gradient Magnitude and Laplacian of
Gaussian-Based IQA (GM-LOG)

In [26], Gaussian magnitude (GM) and Laplacian of Gaus-
sian (LOG) marginal distributions are jointly normalized in
an adaptive procedure called joint adaptive normalization
(JAN) for assessing the quality of images. The technique fol-
lows a two-step approach, i.e., in the first step, 40 features are
extracted, and in the second step SVR is used to estimate the

quality score. The technique introduces a dependency index
to assess and refine the relationship between GM and LOG
statistics. The luminance discontinuity is used to describe the
structural information by applying GM and LOG operator on
the image.

2.1.4 Oriented Gradients Image Quality Assessment
(OG-IQA)

In [16], gradient statistics are deeply explored relative to the
surrounding and adaboosting neural network is used for com-
puting the quality of images. Distortion in images usually
results in blurring of gradient information. Gradient orienta-
tion information can augment gradient magnitude for BIQA.
Anisotropic information present in images is modified by
distortion to produce unnatural local anisotropic properties.
OG-IQA exploits these properties to assess the quality of
images. The features extracted over two scales are based on
variances of gradient magnitude histogram, variances of rel-
ative gradient orientation histogram and variances of relative
gradient magnitude histogram. The adaboosting neural net-
work maps the image features to the quality score.

2.1.5 Distortion-Type Classification and Label Transfer
(TCLT)

In [17], a two-step approach is adopted, i.e., distortion-type
classification and label transfer. DCT, wavelet and spatial
domain are utilized for feature extraction in each YCbCr
channel. In DCT domain, intra-block skewness and global
frequency band entropy are used as features. Exponential
decay based on entropy and self-similarity across all scales
are used as features in wavelet domain. In spatial domain,
local binary patterns are used as features with 16 neighbors
and radius of 2. Once the features are extracted, the qual-
ity score of the image is estimated by using label transfer
from subjective quality labels of annotated images to the test
image. TCLT does not require training as quality score pre-
diction is based on label transfer.
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2.1.6 Natural Image Quality Evaluator (NIQE)

In [30], quality aware statistical features are extracted in the
spatial domain. NIQE is opinion and distortion unaware tech-
nique that does not require training for the estimation of
quality score. The images are divided into P × P patches.
The patches with sharp regions giving detail information
are selected to construct a model of natural image statis-
tics. Selected patches are used to extract 36 features. The
extracted features are modeled by fitting them on a MVG
distribution. The quality score is predicted by measuring a
distance between the MVG of the distorted image with that
of the undistorted pristine image.

2.2 Feature Selection

The features extracted by different BIQA techniques are
subjected to feature selection. Five commonly used feature
selection algorithms are employed for comparison. Feature
selection algorithms select optimum features for BIQA that
are most affected by the presence of distortion in the image.
Therefore, features selection is performed based on the devi-
ation of NSS properties of distorted image from natural
images. The details of each feature selection algorithms are
as follows.

2.2.1 Random Search (RS)

Random feature selection uses LasVegas algorithmwith ran-
domness. It results in guiding the feature selection rapidly
toward a correct solution [31]. From a total of N features,
a subset of M features are selected. An inconsistency cri-
terion is applied to check whether desired performance can
be achieved by M features, which are less than currently
selected features Mbest . The inconsistency rate of M and
Mbest is compared and interchanged when M < Mbest . The
above- mentioned procedure is repeated maxtries times.

The inconsistency criterion of a set of features is deter-
mined as follows. Firstly, if the label of two instances
does not match but otherwise they are identical, then
they are considered as inconsistent. Secondly, the incon-
sistency count can be calculated by subtracting the total
number of identical instances from the total number of
classes. Lastly, the inconsistency rate is computed by
adding up the inconsistency count and dividing it by total
instances.

2.2.2 Incremental Wrapper Feature Subset Selection with
Naive Bayes Classifier (IWSSENB)

In [32], IWSSENB uses ranking with the naive Bayesian
classifier for feature selection. A filter based on Symmetric
uncertainty (SU) is used to evaluate the predictive ability of

each attribute. Attributes are ranked in descending order of
SU and is given in [32] as.

SU(xi , Z) = 2

(
H(xi ) − H(x |Z)

H(xi ) + H(Z)

)
, (1)

where xi is the ith instance of input, Z is the class and H
is the entropy. IWSSENB validates the training set T using
naive Bayesian classifier and fivefold cross-validation after
dividing the training data into subsets. A relevance criterion
based on t test value is computed over the accuracy for each
fold and is used to decide whether a new attribute should be
included in the selected subset.

2.2.3 Linear Forward Selection (LFS)

A commonly used sequential forward selection technique
is used for linear selection. The technique starts by per-
forming a simple hill climbing search [33]. Linear forward
selection technique reduces the number of features in each
forward step. It starts with an empty subset and evaluates
each attribute for inclusion to the current feature subset. The
attribute that helps achieve the top score is selected perma-
nently. The search is terminated when no single attribute
expansion can help in improving the current top score. As
the number of evaluations increase exponentially with each
step, the attributes which are considered in each step are lim-
ited by a user-defined constant. The user-defined constant
is determined by adopting ORDERED-FS search algorithm
using P − f old cross-validation. ORDERED-FS randomly
divides the data into training and testing sets.

Attributes for the algorithm are selected based on train-
ing data. The method performs P forward selections, one
for each training set. The training data are utilized so that a
decision can be drawn to select the attributes which can be
incrementally included in each iteration for forward selec-
tion. The assessment of P −best subsets is performed using
the test data for a particular size of subset. The subset with
highest average computed over P scores is selected as the
optimal feature subset. Finally, forward selection is per-
formed on the dataset to find a subset of features of attribute
size P .

2.2.4 Particle Swarm Optimization (PSO)

Particle swarm optimization is a random population search-
ing algorithm, which is being commonly used because it can
perform nonlinear optimization effectively [34]. Each single
candidate in PSO is known as particle. Each particle uses the
memory gained by it in the swarm to find the best solution. A
fitness value and velocity are associated with each particle.
The fitness value is evaluated by a fitness function, whereas
the velocity defines the direction, inwhich the particlemoves.
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The particle moves in the problem space over a wave of opti-
mum particles. The initial swarm is selected randomly. On
each iteration, every particle is updated by using pbest and
gbest . For the purpose of classification, the population is
taken as binary, i.e., {0, 1}. A bit value represented as 0 indi-
cates that the feature is not selected, whereas a 1 in the bit
value represents that the feature is selected. The population
data are given as input to the support vector classifier (SVC)
to obtain classification accuracy [35]. The search for best
solution continues until the terminating criterion is reached.

2.2.5 Genetic Search (GS)

Genetic search is an optimization problem, which analyzes
and optimizes a population, i.e., a set of solutions [36]. In
genetic algorithm, the solution is represented by a sequence
of 0ś and 1ś in the search space that are called chromo-
somes. The genetic algorithm allows these chromosomes to
crossover or mutate. Crossover is a process through which
offspring pair of chromosomes is produced. Mutation pro-
duces a chromosome in which some components are altered,
but overall it is identical to the original chromosome. The
optimization is done in several iterations called generations.
In each generation, a new set of chromosomes are created.
The next generation constitutes only the best chromosomes.
Least costly feature subset is used by the genetic search that
does not deteriorate the performance of the system below
a certain level. The classifier error is used to evaluate the
performance of feature subset.

A feasible feature subset is defined as one whose error
rate falls below a feasible threshold (t). Subsets of feature
with error rate below the feasible threshold are given a small
reward. Feature subsets with error rate equal to the feasible
threshold are evaluated according to the error rate. Subsets
of feature with error rate above t but below t + m are given
a small penalty. Feature subsets with error rate above t + m
receive high penalty, wherem is the errormargin. The genetic
function converges to optimized feature selection based on
the above properties.

2.3 Quality Prediction Using Selected Features

In the third step, selected features are used for quality score
prediction. The selected features are given as an input to SVR
to predict the image quality for DIIVINE [22], SSEQ [27],
GM-LOG [26] and OG-IQA [16]. The SVR model is given
in [37] as

ψ(x) = αβ(x) + c, (2)

where x is the input feature vector,β is the feature space andα

is the weight corresponding to ith instance of x , i.e., β relates
the input features to the feature space. Let the input features

be denoted by xi and the associated target value yi . Then,
the objective of SVR is to estimate support vector machine
function such that the difference between the target value and
the predicted value is minimized. Kernel function is used for
all the computations of SVR because it offers the advantage
of taking inner product without the need to construct the
vector space explicitly. A radial function of order Q is given
in [37] as

k(x) = K
Σ
i=1

αi
1

(2π)
Q
2 σ

Q
i

exp

(
−||x − ci ||

2σ 2
i

)
+ b, (3)

where ci denotes the center of the ith Gaussian basis function
with standard deviationσi ,αi is theweight of the ithGaussian
basis function and b is the bias value.

TCLT [17] does not require training, and label transfer
using annotated images is employed for quality score eval-
uation. Similarly, NIQE [30] does not require training and
distance between the MVG distribution of distorted and nat-
ural images is used to evaluate the quality score. The distance
is measured as [30]

D(v1, v2,Σ1,Σ2)

=
√√√√(

(v1 − v2)T
(

Σ1 + Σ2

2

)−1

(v1 − v2)

)
, (4)

where v1, v2 are mean vectors and Σ1, Σ2 are covariance
matrices of multivariate gaussian distribution.

3 Experimental Results

3.1 IQA Databases

Many subjective databases are available for the purpose of
BIQA. Four commonly used IQA databases are selected to
evaluate the performance of the proposed methodology, i.e.,
LIVE [38], TID2008 [39], CSIQ [40] andA57 [41]. There are
29 reference images in the LIVE database, which are affected
by five types of distortions, namely, fast fading (FF), Gaus-
sian blur (GB), JPEG2000 (JP2K), JPEG and white noise
(WN). A total of 779 images with varying degree of distor-
tions is present in the LIVE database. The TID2008 database
consists of 25 reference images. There are totally 17 types
of distortions in the TID2008 database, and each reference
image is degraded at four different levels of each distortion
type. The evaluators selected to assess the quality of images
were selected fromdifferent countries, i.e., Ukraine, Italy and
Finland and from diverse social levels, i.e., students, tutors
and researchers. CSIQ database comprises of 30 reference
images and five types of distortion types, i.e., JPEG, JP2K,
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Fig. 2 Impact of feature selection algorithms on normalized feature histogram for BIQA techniques a DIIVINE, b SSEQ, cGM-LOG, dOG-IQA,
e TCLT, f NIQE

contrast, WN and GB. Image quality assessment was per-
formed by 35 observers on a LCD screen of 1920 × 1200
resolution. The A57 database consists of 3 reference images
with 6 distortion types. Each distortion is degraded at 3 levels.
There are 54 total images in the A57 database that have been
evaluated by 7 observers. Four common distortions from the
TID2008, CSIQ and A57 database are used for performance
evaluation in this work, i.e., GB, JP2K, JPEG, WN.

3.2 Evaluation Criteria and Parameters

The quality score of an image affected by distortion is
computed using SVR for DIIVINE [22], SSEQ [27], GM-
LOG [26] and OG-IQA [16]. SVR requires training to assess

the quality score of an image. Therefore, the dataset is divided
into two non-overlapping groups, i.e., training and testing.
The training and testing are repeated 1000 times by randomly
selecting non-overlapping sets of training and testing images
to nullify any bias due to selection of images. SVR parame-
ters c and γ are selected by applying grid test for each BIQA
technique, i.e., the parameters are optimized for each BIQA
technique. LibSVM package is used for the implementation
of SVR and SVC [42].WEKA [43] is used for the application
of five commonly used feature selection algorithms. Feature
selection is performed by considering all the image features
across four IQA databases for each BIQA technique, i.e.,
same features are used for all the databases for a particular
BIQA technique.
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Fig. 3 Percentage of features selected using different feature selection algorithms for six BIQA techniques
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Fig. 4 Aggregate percentage of features selected using different feature selection algorithms for six BIQA techniques

For the performance comparison Spearman’s ranked
ordered correlation constant (SROCC), linear correlation
constant (LCC), kendall correlation constant (KCC) and
root-mean-squared error (RMSE) are computed. SROCC is
calculated as [44]

SROCC = 1 − 6Σd2i
n(n2 − 1)

, (5)

where di is the difference between paired ranks and n is the
total number of cases. The LCC is given as [45]
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Table 1 Performance comparison of the proposed scheme with state-of-the-art schemes in terms of median value of SROCC for each individual
distortion on LIVE, TID2008, CSIQ and A57 Databases

BIQA technique Database Distortion type Feature selection algorithm

All RS [31] LFS [33] GS [36] IWSSENB [32] PSO [34]

DIIVINE [22] LIVE [38] FF 0.9022 0.8695 0.8446 0.8446 0.8278 0.8783

GB 0.9631 0.9172 0.8670 0.8670 0.8002 0.9360

JP2K 0.6217 0.8414 0.8234 0.8234 0.8127 0.8628

JPEG 0.9037 0.8766 0.7871 0.7871 0.7921 0.8742

WN 0.9828 0.9818 0.9648 0.9648 0.9591 0.9828

CSIQ [40] GB 0.7139 0.7838 0.7826 0.7826 0.7669 0.7893

JP2K 0.7801 0.8185 0.8209 0.8209 0.8073 0.8140

JPEG 0.6274 0.7526 0.6476 0.6476 0.6423 0.8216

WN 0.7227 0.9306 0.8874 0.8874 0.8897 0.9259

TID2008 [39] GB 0.5068 0.8156 0.7023 0.7023 0.5982 0.8316

JP2K 0.7598 0.8436 0.8378 0.8378 0.8045 0.8526

JPEG 0.4536 0.7444 0.7203 0.7203 0.6534 0.8180

WN 0.5353 0.8687 0.8656 0.8656 0.8511 0.8827

A57 [41] GB 0.8223 0.8346 0.8250 0.8292 0.8263 0.82221

JP2K 0.8547 0.8321 0.8252 0.8671 0.8692 0.8562

JPEG 0.8135 0.8032 0.8563 0.8321 0.8190 0.8083

WN 0.8351 0.8621 0.8210 0.8589 0.84311 0.8421

SSEQ [27] LIVE [38] FF 0.8384 0.8778 0.7862 0.8778 0.8569 0.7862

GB 0.9340 0.9281 0.9030 0.9281 0.9261 0.9030

JP2K 0.8692 0.8956 0.8349 0.9365 0.8824 0.8349

JPEG2 0.8756 0.8745 0.8253 0.8745 0.8949 0.8253

WN 0.9064 0.9532 0.9133 0.9532 0.9591 0.9133

CSIQ [40] GB 0.8547 0.8412 0.8238 0.8412 0.8414 0.8238

JP2K 0.8356 0.8283 0.8216 0.8283 0.8300 0.8216

JPEG 0.8283 0.8616 0.8716 0.8616 0.8625 0.8716

WN 0.9123 0.9257 0.7437 0.9257 0.9224 0.7437

TID2008 [39] GB 0.8421 0.7925 0.8150 0.7925 0.7701 0.8150

JP2K 0.8722 0.8857 0.8782 0.8857 0.8872 0.8782

JPEG 0.8075 0.7459 0.7704 0.7459 0.7355 0.7704

WN 0.8256 0.8238 0.3877 0.8238 0.8607 0.3877

A57 [41] GB 0.8792 0.8621 0.8560 0.8621 0.8851 0.8856

JP2K 0.8821 0.8863 0.8829 0.8863 0.8876 0.8829

JPEG 0.8463 0.8521 0.8492 0.8521 0.8596 0.8492

WN 0.8369 0.8531 0.8456 0.8531 0.8370 0.8456

GM-LOG [26] LIVE [38] FF 0.8867 0.8874 0.8872 0.8990 0.8966 0.9010

GB 0.8739 0.9126 0.9133 0.8941 0.9222 0.9034

JP2K 0.8752 0.8847 0.8834 0.8964 0.8887 0.8961

JPEG 0.8981 0.8826 0.8820 0.9039 0.8898 0.8862

WN 0.9788 0.9818 0.9837 0.9813 0.9808 0.9823

CSIQ [40] GB 0.8220 0.8616 0.8634 0.8690 0.8701 0.8638

JP2K 0.8683 0.8843 0.8908 0.9146 0.9008 0.9186

JPEG 0.8723 0.8832 0.8848 0.8852 0.8843 0.8928

WN 0.9542 0.9493 0.9499 0.9497 0.9515 0.9488

TID2008 GB 0.8301 0.8481 0.7940 0.8376 0.8120 0.8263

JP2K 0.8737 0.9098 0.9053 0.8947 0.9038 0.8977
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Table 1 continued

BIQA technique Database Distortion type Feature selection algorithm

All RS [31] LFS [33] GS [36] IWSSENB [32] PSO [34]

JPEG 0.8842 0.8767 0.8851 0.9023 0.9008 0.9005

WN 0.9054 0.8876 0.8797 0.8947 0.9058 0.8980

A57 [41] GB 0.8651 0.8663 0.8492 0.8722 0.8652 0.8695

JP2K 0.8231 0.8451 0.8391 0.8321 0.8369 0.8692

JPEG 0.7945 0.8021 0.7900 0.8331 0.8365 0.8120

WN 0.8523 0.8421 0.8732 0.8763 0.8591 0.8342

OG-IQA [16] LIVE [38] FF 0.7830 0.7783 0.7783 0.7783 0.7783 0.7783

GB 0.8586 0.8687 0.8687 0.8687 0.8687 0.8687

JP2K 0.8929 0.8984 0.8984 0.8984 0.8984 0.8984

JPEG 0.7358 0.7872 0.7872 0.7872 0.7872 0.7872

WN 0.9153 0.9665 0.9665 0.9665 0.9665 0.9665

CSIQ [40] GB 0.8590 0.8705 0.8705 0.8705 0.8705 0.8705

JP2K 0.7580 0.7717 0.7717 0.7717 0.7717 0.7717

JPEG 0.7566 0.7976 0.7976 0.7976 0.7976 0.7976

WN 0.6934 0.8185 0.8185 0.8185 0.8185 0.8185

TID2008 [39] GB 0.7820 0.7759 0.7759 0.7759 0.7759 0.7759

JP2K 0.8872 0.8857 0.8857 0.8857 0.8857 0.8857

JPEG 0.7353 0.7474 0.7474 0.7474 0.7474 0.7474

WN 0.5647 0.7504 0.7504 0.7504 0.7504 0.7504

A57 [41] GB 0.8663 0.8736 0.8736 0.8736 0.8736 0.8736

JP2K 0.8121 0.8223 0.8223 0.8223 0.8223 0.8223

JPEG 0.8871 0.8893 0.8893 0.8893 0.8893 0.8893

WN 0.8331 0.8421 0.8421 0.8421 0.8421 0.8421

TCLT [17] LIVE [38] FF 0.9152 0.9180 0.9038 0.9177 0.9533 0.9038

GB 0.9560 0.9562 0.9463 0.9568 0.9787 0.9537

JP2K 0.9495 0.9530 0.9560 0.9541 0.9580 0.9507

JPEG 0.9710 0.9620 0.9630 0.9690 0.9622 0.9627

WN 0.9871 0.9860 0.9860 0.9863 0.9820 0.9848

CSIQ [40] GB 0.8076 0.8180 0.7851 0.8076 0.7921 0.7969

JP2K 0.8206 0.8251 0.7981 0.8041 0.7951 0.8037

JPEG 0.9072 0.9174 0.9020 0.9214 0.9014 0.9152

WN 0.9047 0.9310 0.9281 0.9299 0.9081 0.9339

TID2008 [39] GB 0.9053 0.9060 0.8972 0.9090 0.9092 0.9075

JP2K 0.8647 0.8691 0.8114 0.8730 0.8752 0.8278

JPEG 0.8707 0.8717 0.8594 0.8789 0.8735 0.8677

WN 0.8302 0.8320 0.8593 0.8308 0.8353 0.8306

NIQE [30] LIVE [38] FF 0.8473 0.8660 0.8231 0.8261 0.9200 0.8201

GB 0.9340 0.9394 0.9335 0.9365 0.9423 0.9305

JP2K 0.8914 0.8920 0.8860 0.8890 0.9321 0.8830

JPEG 0.8960 0.8925 0.8740 0.8770 0.9872 0.8710

WN 0.9823 0.9823 0.9798 0.9828 0.9793 0.9768

CSIQ [40] GB 0.9066 0.9132 0.8980 0.9310 0.9150 0.8950

JP2K 0.8839 0.8870 0.8818 0.9595 0.9313 0.8788

JPEG 0.8714 0.8590 0.8362 0.9792 0.9220 0.8332

WN 0.9608 0.9560 0.9543 0.9573 0.9364 0.9513
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Table 1 continued

BIQA technique Database Distortion type Feature selection algorithm

All RS [31] LFS [33] GS [36] IWSSENB [32] PSO [34]

TID2008 [39] GB 0.8475 0.8647 0.8793 0.8823 0.8737 0.8763

JP2K 0.8737 0.8902 0.8857 0.8887 0.8562 0.8827

JPEG 0.8962 0.8872 0.8740 0.8770 0.7677 0.8710

WN 0.9090 0.9097 0.9098 0.9128 0.8563 0.9068

A57 [41] GB 0.8221 0.8311 0.8290 0.8361 0.8356 0.8396

JP2K 0.8351 0.8362 0.8436 0.8398 0.8422 0.8363

JPEG 0.8469 0.8522 0.8563 0.8596 0.8566 0.8488

WN 0.8132 0.8261 0.8222 0.8361 0.8356 0.8161

Hit count 21 70 52 71 70 54

Bold value indicates better or at par performance of features selected using feature selection algorithms as compared to using all the features for a
particular blind image quality assessment technique

LCC =
∑n

i=1(ai − ā)(li − l̄))√∑n
i=1(ai − ā)2

√∑n
i=1(li − l̄)2

, (6)

where ai and li are the values in first dataset and second
dataset, respectively, and ā and l̄ are mean values of ai and
li , respectively. KCC is given as [46]

KCC = nc − nd
n(n − 1)/2

, (7)

where n is the total number of observations, nc is the number
of concordant pairs and nd is the number of discordant pairs.
RMSE is given by [47]

RMSE = 1

n

√√√√ n∑
i=1

(xdmos − xscore)2, (8)

where n is the total number of images, xdmos is the mean
observer score and xscore is the predicted quality score for
image x .

3.3 Performance Comparison

A major portion of the literature for BIQA is based on NSS
features. NSS- based BIQA techniques perform under the
assumption that natural images possess certain properties that
can be represented by NSS features. The presence of distor-
tion affects these NSS properties. Image quality assessment
can be performed by measuring the divergence of NSS prop-
erties between the distorted and natural image. All the BIQA
techniques employed in thiswork are based onNSS, and each
extracted feature represents NSS properties of the image as
feature selection algorithms select a subset of NSS features
that belong to existing BIQA techniques. Therefore, impact
of selected features on NSS needs to be addressed. For this

purpose normalized histogram for features of each BIQA
technique over all the distortion types, all the databases and
feature selection algorithms is shown in Fig. 2.

It can be observed that the NSS properties are preserved
after feature selection. Moreover, the NSS properties of the
undistorted and distorted images are not only different, but
also the difference between the NSS properties of natural
and distorted images increases after feature selection. Fea-
ture selection algorithms select optimum features for BIQA
that are most affected by the presence of distortion in the
image. The selected NSS features can more effectively rep-
resent the deviation of NSS properties of distorted image
from natural images that is validated in Fig. 2. The impact
of feature selection on BIQA can be evaluated by the con-
sidering that the feature selection algorithm with the highest
deviation in NSS properties from the natural images gives
the best performance for the respective BIQA technique.

In order to illustrate that the feature selection algorithms
reduce the number of features for different BIQA techniques,
the percentage of features used by different feature selec-
tion algorithms as compared to using all the NSS features is
shown in Fig. 3. It can be observed that all feature selec-
tion algorithms reduces the number of features for each
BIQA technique. The largest reduction in features is achieved
by incremental wrapper feature subset selection with naive
Bayes classifier for DIIVINE, linear forward selection for
SSEQ, random search for GM-LOG, all the five feature
selection techniques for OG-IQA, particle swarm optimiza-
tion for NIQE and linear forward selection for TCLT. The
largest reduction of 91.67% is achieved for SSEQ using lin-
ear forward selection algorithm. Figure 4 shows the overall
percentage of features selected by different feature selection
algorithms. It can be observed that highest amount of feature
reduction is achieved by linear forward search algorithm.
Thus, linear forward selection algorithm ranks top feature
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Table 2 Overall performance
comparison of feature selection
algorithms on different BIQA
techniques for LIVE, TID2008,
CSIQ and A57 databases

BIQA technique Feature selection technique SROCC LCC KCC RMSE

DIIVINE [22] All 0.7491 0.7321 0.5953 10.072

RS [31] 0.8521 0.8627 0.6807 8.1890

LFS [33] 0.8370 0.8498 0.6654 9.2077

GS [36] 0.8150 0.8246 0.6422 9.4155

IWSSENB [32] 0.7927 0.8012 0.6178 9.5863

PSO [34] 0.8676 0.8785 0.6950 7.7902

SSEQ [27] All 0.8643 0.8840 0.6833 7.6782

RS [31] 0.8698 0.8952 0.7078 7.1303

LFS [33] 0.8095 0.8290 0.6484 8.7321

GS [36] 0.8698 0.8852 0.6978 7.1303

IWSSENB [32] 0.8695 0.8943 0.7075 7.1787

PSO [34] 0.8095 0.8290 0.6484 8.7321

GM-LOG [26] All 0.8870 0.8947 0.7184 7.1671

RS [31] 0.8931 0.9113 0.7370 6.5506

LFS [33] 0.8932 0.9112 0.7334 6.0210

GS [36] 0.9000 0.9185 0.7426 5.9813

IWSSENB [32] 0.9006 0.9268 0.7506 5.6388

PSO [34] 0.9013 0.9186 0.7440 5.2578

OG-IQA [16] All 0.7928 0.7970 0.6190 11.398

RS [31] 0.8232 0.8203 0.6494 10.415

LFS [33] 0.8232 0.8203 0.6494 10.415

GS [36] 0.8232 0.8203 0.6494 10.415

IWSSENB [32] 0.8232 0.8203 0.6494 10.415

PSO [34] 0.8232 0.8203 0.6494 10.415

TCLT [17] All 0.8730 0.8856 0.7381 7.0719

RS [31] 0.8862 0.8882 0.7457 6.5321

LFS [33] 0.8742 0.8879 0.7407 7.0658

GS [36] 0.8767 0.8794 0.7347 6.8446

IWSSENB [32] 0.8816 0.8860 0.7392 6.6521

PSO [34] 0.8759 0.8890 0.7465 6.9939

NIQE [30] All 0.8999 0.8992 0.7437 7.7754

RS [31] 0.9022 0.9151 0.7517 7.6276

LFS [33] 0.8920 0.8992 0.7368 7.8142

GS [36] 0.9092 0.9239 0.7581 7.5079

IWSSENB [32] 0.9159 0.9266 0.7603 7.1371

PSO [34] 0.8890 0.8964 0.7344 7.9275

selection algorithm when feature reduction is considered in
all of the BIQA techniques.

In this set of experiment, the proposed three-step approach
is evaluated in terms of statistical parameters. For this pur-
pose, all the BIQA techniques are trained separately using
features selected from feature selection algorithms. The
SROCC score for each distortion type over four databases,
three color, i.e., LIVE, TID2008 and CSIQ and one gray
scale, i.e., A57 and five feature selection algorithms for
DIIVINE, SSEQ, GM-LOG, OG-IQA and NIQE techniques
is presented in Table 1. TCLT does not convert the color

images into gray scale for the prediction of quality score;
therefore, TCLT results are only reported for color databases
in Table 1. It is evident that all feature selection algorithms
improve the performance of the selected BIQA techniques
over majority of the distortion types. Hit count in Table 1
indicates how many times each feature selection algorithm
performs better or equal than the state-of-the-art techniques
using all features. The highest hit count of 71 is achieved
for genetic search feature selection algorithm. The lowest hit
count of 52 is achieved for linear forward selection algorithm,
which is still much higher than the hit count of 21when using
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Fig. 5 Box plot of SROCC using feature selection algorithms for different BIQA techniques averaged over all the databases a DIIVINE, b SSEQ,
c GM-LOG, d OG-IQA, e TCLT, f NIQE

all the features. It is evident from Table 1 that the proposed
methodology improves the performance of BIQA techniques
on color as well as grayscale images.

Table 2 shows an overall performance comparison of the
proposed method with state-of-the-art BIQA techniques. All
the feature selection algorithms give better results for each
BIQA technique except linear forward selection and particle
swarm optimization on SSEQ and NIQE. As all the BIQA
techniques used are based on NSS; therefore, the feature
selection algorithm, which selects features with the highest
deviation from natural images, gives the best performance.
Table 2 validates the improvement in performance using fea-
ture selection algorithms in a similar way as depicted in
Fig. 2.

Figure 5 shows a box plot of averaged SROCC score for
feature selection algorithms over different BIQA techniques
for four IQA databases. It can be observed that the fea-

ture selection algorithms improves the performance of BIQA
techniques using less number of NSS features. It is also seen
that the interquartile range that represents the deviation in
SROCC scores is also reduced by using feature selection
algorithms as compared to using all features. The quality
score prediction of BIQA techniques shows higher correla-
tion with MOS after feature selection algorithm is applied.

Computational time of BIQA technique has a signifi-
cant importance. Therefore, execution time of each BIQA
technique using all features and the execution time when fea-
tures are selected by feature selection algorithms is shown
in Table 3. It can be observed that the execution time is
decreased for all the BIQA techniques. IWSSENB performs
the best forDIIVINE, linear forward selection for SSEQ, ran-
dom search for GM-LOG, particle swarm optimization for
NIQE and linear forward selection for TCLT. The maximum
reduction in time is 91.66% for SSEQ using linear forward
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Table 3 Impact of feature selection algorithm on different BIQA techniques in terms of execution time in seconds

Feature selection algorithm BIQA technique

DIIVINE [22] SSEQ [27] GM-LOG [26] OG-IQA [16] TCLT [17] NIQE [30]

All 28.2 1.71 0.43 0.32 0.1724 4.89

RS [31] 8.97 0.57 0.12 0.16 0.0427 1.76

LFS [33] 3.20 0.15 0.13 0.16 0.0359 1.69

GS [36] 9.93 0.57 0.20 0.16 0.0441 1.81

IWSSENB [32] 2.56 0.74 0.15 0.16 0.0516 1.9

PSO [34] 7.69 0.44 0.17 0.16 0.0690 1.53

selection. It can be concluded from Tables 2 and 3 that the
feature selection algorithms which take the least amount of
time in execution show the least improvement in performance
in terms of evaluation parameters, i.e., SROCC, LCC, KCC
and RMSE. Furthermore, it can be observed from Fig. 3 and
Table 3 that the feature selection algorithm which selects
fewer number of features requires lesser number of compu-
tations resulting in reduced execution time of the model. The
experimental results show that feature selection improves the
performance of existing BIQA techniques with higher cor-
relation scores, lower RMSE values and less execution time
as compared to using all features.

4 Conclusion

Blind image quality assessment is a difficult task due to
the absence of the reference image. The performance of
BIQA techniques is directly related to features used to assess
the quality of the image. Redundant and irrelevant features
can degrade the performance of BIQA techniques in terms
of low correlation with the mean observer score and large
execution time. In this paper, three-step approach is pro-
posed that incorporates feature selection in the existingBIQA
framework. The performance is evaluated on three-color and
one grayscale IQA database for six BIQA techniques. The
experimental results show that the performance of BIQA
techniques improves in terms of higher correlation with the
mean observer score and less execution time when feature
selection is performed. It is observed that feature selection
algorithm improves the overall performance of all BIQA
techniques. But the least amount of improvement in over-
all performance in terms of SROCC, LCC, KCC and RMSE
is observed for those feature selection algorithms, which
reduces largest percentage of features and have least compu-
tational time. The proposed three-step approach is applicable
to and performs well for color, grayscale images and BIQA
techniques that require training for prediction of image qual-
ity score, as well as for quality aware feature-based BIQA
techniques.
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