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Applying uni¯ed formula while computing point addition and doubling provides immunity to

Elliptic Curve Cryptography (ECC) against power analysis attacks (a type of side channel
attack). One of the popular techniques providing this uni¯edness is the Binary Hu® Curves

(BHC) which got attention in 2011. In this paper we are presenting highly optimized archi-

tectures to implement point multiplication (PM) on the standard NIST curves over GF ð2163Þ
andGF ð2233Þ using BHC. To achieve a high throughput over area ratio, ¯rst of all, we have used
a simpli¯ed arithmetic and logic unit. Secondly, we have reduced the time to compute PM

through Double and Add algorithm. This is achieved by increasing the frequency of opera-

tion through a 2-stage pipelined architecture. The increase in clock cycles caused by con-

sequent pipeline hazards is controlled through optimal scheduling of computations involved
in PM. The synthesis results show that our designs can work up to a frequency of 377MHz on

Xilinx Virtex 7 FPGA. Moreover, the overall throughput/area ratio achieved through

the adopted approach is up to 20% higher while comparing with available state-of-the-art

solutions.
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1. Introduction

Nowadays, Elliptic Curve Cryptography (ECC) is a choice in the ¯eld of asymmetric

key cryptography due to its provision of shorter key lengths as compared to the well-

known established Rivest–Shamir–Adleman1 algorithm. Elliptic curves were ¯rst

independently proposed by Neil Koblitz2 and Victor Miller3 in 1985. Scalar/point

multiplication (PM) is the core operation in conventional ECC. In order to imple-

ment PM, two types of ¯elds are involved: (1) prime ¯eld GF ðpÞ and (2) binary

extension ¯eld GF ð2mÞ, by adopting either simple a±ne coordinates or projective

coordinates. Elliptic curves over GF ð2mÞ ¯eld are particularly more attractive

because they provide e±cient hardware implementations of ¯nite ¯eld (FF) opera-

tions.1 Projective coordinates are well suited to achieve e±cient throughput/area

ECC designs as compared to a±ne coordinates, in which for each point addition

(PA)/point doubling (PD) an associated inversion operation is required.

The security strength of ECC mainly depends on the hardness of its discrete

logarithmic problem.1 To address this issue, PA and PD are the necessary opera-

tions. Di®erent mathematical formulations for PA and PD to compute PM ensure

that the addition laws on ECC are not uni¯ed.4 However, the di®erences of these

operations make the crypto system vulnerable to Side Channel Attacks (SCAs).5

In order to resists SCAs, di®erent forms of ECC have been introduced which

provide uni¯ed addition (to compute PA and PD) laws such as Binary Edward

Curves (BEC)6 and Binary Hu® Curves (BHC).7 BEC require higher computational

cost than BHC.4 Hence, the crypto processor based on this curve is expected to be a

simple SCA preventive.

The particular domains of applications for highly secure asymmetric key cryp-

tosystems against SCAs are wireless sensor networks,8 cloud computing,9 radio

frequency identi¯cation,10 Identity-Based Encryption,11 etc.

Limited hardware based research works, targeting architectures for those algo-

rithms which are resistant against Simple Power Analysis Attacks (SPA) and SCAs,

have been proposed previously. By using projective coordinates along with the

hybrid Karatsuba multiplier and Itoh–Tsujii inversion algorithms, an FPGA based

research work for the computation of PM is available in Ref. 4. To achieve hybrid

approach for FF multiplication, they coupled simple and general Karatsuba multi-

pliers. General Karatsuba multiplier is used for the better utilization of LUT over

smaller bits while the simple Karatsuba multiplier is used for minimizing the gate

counts over longer bits.12 Additionally, to reduce the number of clock cycles (CC),

they adopted the Quad block version of the Itoh–Tsujii algorithm. Another FPGA

based approach is found in Ref. 13, where uni¯ed PA law has been implemented by

adopting projective coordinates to make BHC more secure against SPA.

In this paper we have shown that the uni¯ed addition law, as proposed in Ref. 13

for BHC, can be e±ciently implemented on FPGA resources by adopting di®erent

optimization techniques. On top level, polynomial basis representation along with
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projective coordinate system is selected. We have selected Lopez and Dahab as it

requires less ¯eld multiplications and inversion operations to implement PM.1

In order to attain higher throughput, nonpipelined, 2-stage and 3-stage pipelined

architectures along with associated pipelining hazards are investigated. With the

above stated selections, we have modeled our design for GF ð2163Þ and GF ð2233Þ.
Finally both designs are implemented at post place and route level on Xilinx Virtex

4, 5, 6 and 7 devices for performance estimation and, consequently, for comparison

with state-of-the-art.

The remainder of this paper is organized as follows. In Sec. 2, preliminaries for

BHCs over GF ð2mÞ are presented. Our proposed architectures for BHC are discussed

in Sec 3. Section 4 presents the hardware results and performance estimation of

the proposed hardware architecture along with comparison with state-of-the-art.

Finally, Sec. 5 concludes the paper.

2. Preliminaries

2.1. BHC over GF(2m)

Initially, the Hu® model was introduced in 1963.14 Later on, the Hu® model was

revisited in 2010,15 where the description and formulation for the odd characteristic

¯elds were provided. Furthermore, an outline for binary ¯eld was presented and

de¯ned as the set of projective points ðX: Y : ZÞ over GF ð2mÞ by satisfying the

following equation:

E : aXðY 2 þ YZ þ Z 2Þ ¼ bY ðX 2 þXZ þ Z 2Þ : ð1Þ
In Eq. (1), the variables `a' and `b' are curve parameters and they 2 GF ð2mÞ while

considering a 6¼ b.

2.2. Uni¯ed addition law over GF(2m)

In 2011, Devigne and Joye developed the formal construction of a Hu® model for

binary ¯eld.7 This construction provides the uni¯ed addition law (Unif Add) which

is illustrated in Table 1 for binary ¯eld.

Thereafter in 2013, Unif Add for BHC was evaluated as explained in Ref. 13.

They observed that the uni¯ed addition formulas, as described in Ref. 7, show be-

havioral di®erences when computing PA and PD which is vulnerable to the SCAs.

Table 1. Addition law (Unif Add).7

m1 ¼ X1:X2; m2 ¼ Y1:Y2; m3 ¼ Z1:Z2; m4 ¼ ðX1 þ Z1ÞðX2 þ Z2Þ þm1 þm3

m5 ¼ ðY1 þ Z1ÞðY2 þ Z2Þ þm2 þm3; m6 ¼ m1:m3; m7 ¼ m2:m3

m8 ¼ m1:m2 þ ðm3Þ2; m9 ¼ m6ðm2 þm3Þ2; m10 ¼ m7ðm1 þm3Þ2
m11 ¼ m8ðm2 þm3Þ; m12 ¼ m8ðm1 þm3Þ; X3 ¼ �:m9 þm4m11

Y3 ¼ �:m10 þm5m12; Z3 ¼ m11ðm1 þm3Þ
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Based on this observation, they constructed another Unif Add which provides pre-

vention from the SCAs and SPA attacks and is presented in Table 2. For further

mathematical formulations, interested readers can consult Refs. 7 and 13.

Where X3;Y3 and Z3 are the projective points on the de¯ned Hu® curve, as shown

in Tables 1 and 2. Moreover, `�' and `�' are the curve constants and they can be

computed as, � ¼ ðaþ bÞ=b and � ¼ ðaþ bÞ=a. In this work, pre-computed curve

constants i.e., `�' and `�' have been used to increase the throughput. This work

utilizes the `Unif Add' formulations, presented in Table 2, which provide immunity

against the SCA and SPA attacks at algorithmic level.

2.3. PM on BHC

PM is de¯ned by the following equation:

Q ¼ k:P ¼ kðP þ P þ � � � þ P Þ : ð2Þ
Equation (2) is a basic equation for PM, where `Q' is a resultant point on the curve,

`k' is a scalar multiplier and `P ' is an initial point on the curve. To compute PM

operation, we have used the following Double and Add algorithm (Algorithm 1) as

in Ref. 16. A good comparative review over di®erent PM algorithms is presented

in Ref. 17.

Table 2. Addition law (Unif Add).13

m1 ¼ X1:X2; m2 ¼ Y1:Y2; m3 ¼ Z1:Z2; m4 ¼ ðX1 þ Z1ÞðX2 þ Z2Þ
m5 ¼ ðY1 þ Z1ÞðY2 þ Z2Þ; m6 ¼ m1:m3; m7 ¼ m2:m3; m8 ¼ m1:m2 þ ðm3Þ2

m9 ¼ m6ðm2 þm3Þ2; m10 ¼ m7ðm1 þm3Þ2; m11 ¼ m8ðm2 þm3Þ
X3 ¼ �:m9 þm4m11 þ Z3; Y3 ¼ �:m10 þm5m8ðm1 þm3Þ þ Z3

Z3 ¼ m11ðm1 þm3Þ

Algorithm 1. Double and Add algorithm16 over GF (2m).
Input: k = (kn−1, . . . , k1k0) with kn−1 = 1, P = (x, y) ∈ GF (2m)
Output: Q = k.P

Initializations: X1 = xp, Y1 = Y2 = yp, Z1 = 1, X2 = xp4 + b, Z2 = xp2

Point Multiplication:
for (i from n − 2 down to 0) do

Q = Unif Add(Q, Q)
if (ki = 1) then

Q = Unif Add(P, Q)
end if

end for

Reconversion: xq = X2/Z2, yq = Y2/Z22

A. R. Jafri et al.
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Whereas the \Unif Add" represents the set of equations as presented in Tables 1

and 2 for point double and add to compute PM.

3. Proposed Crypto Processor for BHC

The hardware architecture of the proposed crypto processor for BHC is shown

in Fig. 1. The placement of pipeline registers is not shown in the ¯gure, however, it

is discussed later in this section. The initial curve parameters for the proposed

design have been selected from National Institute of Standards and Technology

(NIST).18

3.1. Memory unit

The memory unit (MU) of the proposed dedicated 2-stage pipelined design contains

a 16 locations register ¯le with data size of `m' bits. The main purpose of this unit is

to store di®erent parameters such as X1;X2;Y1;Y2;Z1;Z2 and the intermediate

results m1;m2;m3;m4;m5;m6;T1;T2;T3 and T4, while implementing Algorithm-1

for the speci¯ed curve. It constitutes of two multiplexers (Mux M1 and Mux M2)

which are used to read operands (OP1 and OP 2) from the MU by using the

corresponding control signals (C1 and C2) and a single de-multiplexer (Demux)

which is used to update the MU contents (Mplex out) with a speci¯ed register

address (C3).
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Fig. 1. BHC design for PM.
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3.2. Arithmetic and logic unit

The arithmetic and logic unit (ALU) contains adder, multiplier and reduction units,

as shown in Fig. 1. The addition unit is implemented through `m' number of bit-wise

exclusive-or (XOR) gates.

In order to perform multiplication of two `m' bit polynomials (AðxÞ and BðxÞÞ
over GF ð2163Þ, a serial digit level multiplier with digit size of 41 bits is implemented

in Ref. 19 where each multiplication requires 4 clock cycles (CC). In this paper, we

have implemented the parallel Least Signi¯cant Digit (LSD) multiplier with a digit

size of s ¼ 32 bits, as shown in Fig. 2. The digits with s ¼ 32 bits of polynomial BðxÞ
is created (i.e., B1–B8) and then parallel multiplication of each `s' bit digit with `m'

bit polynomial ðAðxÞÞ is performed by generating partial products. To compute FF

multiplication operation over GF ð2163Þ, a total of six digits are required. Out of these

six digits, ¯ve digits are with 32 bit size whereas one digit is with three bit size.

Similarly, for GF ð2233Þ a total of eight digits are required. Out of these eight digits,

seven digits (B1–B7) are with 32 bit size whereas one digit (B8) is with nine bit size,

as shown in Fig. 2. Parallel multiplication of each B1–B8 digit with an `m' bit

polynomial AðxÞ results in `sþm� 1' bits of polynomials and these resultant

polynomials are represented as D1–D8, as shown in Fig. 2. Once multiplication of

each `s' bit digit with an `m' bit polynomial is completed, the ¯nal resultant poly-

nomial of size 2�m� 1 bit is created by XOR and shift operations of D1–D8. In this

paper, NIST reduction algorithms over GF ð2163Þ and GF ð2233Þ are implemented, as

described in Algorithm 2.41 and Algorithm 2.42 of Ref. 1.

A[232:0]

Input Polynomial B(x)
s = 9 and 32 bits where s = digits size

B1 to B7 are 32 bit digits 
B8 is 9 bit digit

B1[31:0]B2[63:32]

D1[263:0]

m bit

s bit

m bit

s bit

(s + m-1 bits)

D2[263:0]

B3[95:64]

m bit

s bit

B4[127:96]

m bit

s bit

B5[159:128]

m bit

s bit

B6[191:160]

m bit

s bit

B7[223:192]

m bit

s bit

B8[232:224]

m bit

s bit

D3[263:0]D4[263:0]D5[263:0]D7[263:0] D6[263:0]D8[240:0]

(s + m-1 bits)(s + m-1 bits)(s + m-1 bits)(s + m-1 bits)(s + m-1 bits)(s + m-1 bits)(s + m-1 bits)

[464:0]

NIST Reduction
[232:0]

Resultant Polynomial (Shift + exclusive OR operations) = 2 × m-1 bits (with m = 233 bits)

Input Polynomial A(x)
(A(x) = m bit where m = field size)

Resultant Digits D(x)
D1 to D8 are resultant digits 
with digits size = s + m-1 bits

2 × m-1 bits

m bits

Fig. 2. Parallel LSD multiplier.
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As a multiplication along with reduction operation uses one CC, in order to

reduce hardware resources, squaring instructions (presented in Table 3) are per-

formed by providing the same inputs to the parallel LSD multiplier. Moreover,

inversion is achieved by implementing the Itoh–Tsujii inversion algorithm.20

To compute the inversion operation, Itoh–Tsujii requires nine ¯eld multiplications

when implementing over GF ð2163Þ,21 while 10 ¯eld multiplications are required over

GF ð2233Þ ¯eld.22

3.3. Routing networks

The proposed design constitutes of two routing networks, the ¯rst one (Mux M3) is

from the input curve parameters and MU to the input of ALU and second one (Mux

M4) is from the output of ALU to the input of MU. In order to perform routing

operations, the corresponding control signals are C4 and C5, as shown in Fig. 1.

3.4. Choices for pipeline inclusion

In order to achieve an optimal throughput, the ¯rst action was to explore the choices

of pipelining. Hence, the circuit was divided into three parts, i.e., (1) circuit made

through M1, M2 and M3 used for read operation (R), (2) ALU alone for execution

(E) and (3) combination of M4 and Demux for write back (WB) operation. With this

division, we have three possible solutions i.e., no pipeline registers in the architecture,

hence, R, E and WB in a single CC as carried out in Refs. 4 and 13. Secondly, using

the registers at the input of ALU (2-stage pipelined architecture) i.e., R in one CC

and E & WB in second CC. Finally, using registers both at the input and output of

the ALU (3-stage pipelined architecture), causing R, E and WB in three separate

cycles.

The uni¯ed algorithm of Table 2, requires a total of 23�m storage elements in

MU for intermediate results i.e., for X1;X2;Y1;Y2;Z1;Z2;T1 to T3;m1 to m11;X3;Y3

and Z3 as shown in Table 3 (column 2). It requires a total of 31 CC for each uni¯ed

PA and point double when R, E and WB is performed in one clock cycle i.e., no

pipelining of the architecture (column 1 of Table 3). Moreover, the uni¯ed algorithm

of Table 2 in its given form, can cause read after write (RAW) hazard in the context

of pipelining, as shown in Table 3 (column 3) e.g., the ¯rst RAW hazard occurs

during the execution of inst5 when a write operation is performed on T2 and in the

very next cycle the value of T2 is read. In the 2-stage pipelined architecture context,

one cycle delay will be required to execute inst6 as the new value of T2 will take two

cycles for its computation. By considering the RAW hazards presented above, the

proposed sequences of instructions for a 2-stage pipeline architecture (R and [E, WB]

in two di®erent cycles) are shown in Table 3 (column 4). For a 2-stage pipeline

architecture, it requires a total of 37 CC for each PA and point double. Similarly, for

a 3-stage pipeline architecture (R, E and WB in separate cycles), a total of 43 CC are

required for each PA and point double.
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Further rescheduling of instructions can be performed in order to optimize the

solution in terms of less used hardware resources and less number of instructions to

achieve a PM. Hence, the uni¯ed algorithm of Table 2, is presented according to the

proposed 16�m size of MU as shown in Table 3 (column 5). It requires a total of 32

CC when R, E and WB takes one CC. In the context of pipelining, the presented

algorithm (uni¯ed algorithm of Table 2) for 16�m size of MU can cause only single

RAW hazard as shown in Table 3 (column 6). By considering the RAW hazard

(column 6 of Table 3), the corresponding sequences of instructions for a 2-stage

pipeline architecture are shown in Table 3 (column 7) and it requires a total of 34 CC

Table 3. Proposed scheduling of uni¯ed addition law for PM on BHC.

Scheduling according to sequence

of Table 2 (23�m size of MU)

Proposed scheduling

using 16�m size of MU

Clock

cycles Insti/Operation Hazard

Scheduling for

2-stage pipelined

architecture Insti/Operation Hazard

Scheduling for

2-stage pipelined

architecture

1 Inst1=m1 ¼ X1 �X2 — Inst1[R] Inst1=m1 ¼ X1 �X2 — Inst1[R]

2 Inst2=m2 ¼ Y1 � Y2 — Inst1[E,WB], Inst2[R] Inst2=m2 ¼ Y1 � Y2 — Inst1[E,WB], Inst2[R]

3 Inst3=m3 ¼ Z1 � Z2 — Inst2[E,WB], Inst3[R] Inst3=m3 ¼ Z1 � Z2 — Inst2[E,WB], Inst3[R]

4 Inst4=T1 ¼ ðX1 þ Z1Þ — Inst3[E,WB], Inst4[R] Inst4=T1 ¼ ðX1 þ Z1Þ — Inst3[E,WB], Inst4[R]

5 Inst5=T2 ¼ ðX2 þ Z2Þ — Inst4[E,WB], Inst5[R] Inst5=T2 ¼ ðX2 þ Z2Þ — Inst4[E,WB], Inst5[R]

6 Inst6=m4 ¼ T1 � T2 RAW:T2 Inst5[E,WB],Inst10[R] Inst6=m6 ¼ m1 �m3 — Inst5[E,WB], Inst6[R]

7 Inst7=T1 ¼ ðY1 þ Z1Þ — Inst10[E,WB], Inst6[R] Inst7=m4 ¼ T1 � T2 — Inst6[E,WB], Inst7[R]

8 Inst8=T2 ¼ ðY2 þ Z2Þ — Inst6[E,WB], Inst7[R] Inst8=T1 ¼ ðY1 þ Z1Þ — Inst7[E,WB], Inst8[R]

9 Inst9=m5 ¼ T1 � T2 RAW:T2 Inst7[E,WB], Inst8[R] Inst9=T2 ¼ ðY2 þ Z2Þ — Inst8[E,WB], Inst9[R]

10 Inst10=m6 ¼ m1 �m3 — Inst8[E,WB], Inst11[R] Inst10=xq ¼ m2 þm3 — Inst9[E,WB], Inst10[R]

11 Inst11=m7 ¼ m2 �m3 — Inst11[E,WB], Inst9[R] Inst11=m5 ¼ T1 � T2 — Inst10[E,WB], Inst11[R]

12 Inst12=T1 ¼ m2
3 — Inst9[E,WB], Inst12[R] Inst12=T1 ¼ m2 �m3 — Inst11[E,WB], Inst12[R]

13 Inst13=T2 ¼ m1 �m2 — Inst12[E,WB], Inst13[R] Inst13=T2 ¼ m1 þm3 — Inst12[E,WB], Inst13[R]

14 Inst14=m8 ¼ T1 þ T2 RAW:T2 Inst13[E,WB] Inst14=T4 ¼ x2
q — Inst13[E,WB], Inst14[R]

15 Inst15=T1 ¼ m2 þm3 — Inst14[R] Inst15=T2 ¼ T 2
2 — Inst14[E,WB], Inst15[R]

16 Inst16=T2 ¼ T 2
1 RAW:T1 Inst14[E,WB], Inst15[R] Inst16=T3 ¼ m2

3 — Inst15[E,WB], Inst16[R]

17 Inst17=m9 ¼ T2 �m6 RAW:T2 Inst15[E,WB] Inst17=T1 ¼ T1 � T2 — Inst16[E,WB], Inst17[R]

18 Inst18=T2 ¼ m1 þm3 — Inst16[R] Inst18=T2 ¼ m1 �m2 — Inst17[E,WB], Inst18[R]

19 Inst19=T3 ¼ T 2
2 RAW:T2 Inst16[E,WB], Inst21[R] Inst19=X2 ¼ � � T1 — Inst18[E,WB], Inst19[R]

20 Inst20=m10 ¼ m7 � T3 RAW:T3 Inst21[E,WB], Inst17[R] Inst20=T2 ¼ ðT2 þ T3Þ — Inst19[E,WB], Inst20[R]

21 Inst21=m11 ¼ m8 � T1 — Inst17[E,WB], Inst18[R] Inst21=T3 ¼ m6 � T4 — Inst20[E,WB], Inst21[R]

22 Inst22=Z3 ¼ m11 � T2 RAW:m11 Inst18[E,WB], Inst23[R] Inst22=T4 ¼ T2 � xq — Inst21[E,WB], Inst22[R]

23 Inst23=T1 ¼ ��m9 — Inst23[E,WB], Inst19[R] Inst23=xq ¼ �� T3 — Inst22[E,WB], Inst23[R]

24 Inst24=T3 ¼ m4 �m11 — Inst19[E,WB], Inst22[R] Inst24=yq ¼ m4 � T4 — Inst23[E,WB], Inst24[R]

25 Inst25=X3 ¼ T1 þ T3 RAW:T3 Inst22[E,WB], Inst20[R] Inst25=m6 ¼ m5 � T2 — Inst24[E,WB], Inst25[R]

26 Inst26=X3 ¼ X3 þ Z3 RAW:X3 Inst20[E,WB], Inst24[R] Inst26=m4 ¼ xq þ yq — Inst25[E,WB], Inst26[R]

27 Inst27=T1 ¼ � �m10 — Inst24[E,WB] Inst27=xq ¼ m1 þm3 — Inst26[E,WB], Inst27[R]

28 Inst28=T3 ¼ m5 �m8 — Inst25[R] Inst28=X2 ¼ m4 þ Z2 — Inst27[E,WB], Inst28[R]

29 Inst29=Y3 ¼ T3 � T2 RAW:T3 Inst25[E,WB], Inst27[R] Inst29=m2 ¼ m6 � xq — Inst28[E,WB], Inst29[R]

30 Inst30=Y3 ¼ T1 þ Y3 RAW:Y3 Inst27[E,WB], Inst28[R] Inst30=Z2 ¼ xq � T4 — Inst29[E,WB], Inst30[R]

31 Inst31=Y3 ¼ Y3 þ Z3 RAW:Y3 Inst28[E,WB], Inst26[R] Inst31=m5 ¼ m2 þ T1 — Inst30[E,WB], Inst31[R]

32 — — Inst26[E,WB], Inst29[R] Inst32=yq ¼ m5 þ Z2 RAW: m5 Inst31[E,WB]

33 — — Inst29[E,WB] — — Inst32[R]

34 — — Inst30[R] — — Inst32[E,WB]

35 — — Inst30[E,WB] — — —

36 — — Inst31[R] — — —

37 — — Inst31[E,WB] — — —

A. R. Jafri et al.
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for each PA and point double. Furthermore, 36 CC are required for each PA and

point double when considering a 3-stage pipeline architecture.

For both 16�m and 23�m sizes of memory units, the 2-stage pipelined archi-

tecture gives better throughput/area as compared to the no pipelined architecture

(R, E and WB in 3 separate CC). Addition of a third pipeline stage for WB is not

e±cient as it adds more CC due to RAW hazards. Moreover, addition of registers at

the output of the ALU further reduces the overall throughput/area ratio.

3.5. Control unit (CU)

FSM based e±cient control unit is designed in this work to perform control func-

tionalities. The used control signals are shown as dotted lines with red color in Fig. 1,

whereas the corresponding FSM generating these signals is shown in Fig. 3.

In order to implement Algorithm 1 for BHC, the FSM consists of 127 states for a

2-stage pipelined architecture, as shown in Fig. 3. St: 0 is an idle state, while during

St: 1 to St: 6, control signals for initializations part of Algorithm 1 (i.e., a±ne to

projective conversion) are generated. In order to implement the PM step of Algo-

rithm 1, for each inspected bit of key equals to zero (ki ¼ 0) and count! ¼ m� 1,

during states St: 7 to St: 40, PD control signals are generated for the proposed

scheduling, as presented in Table 3. Initially, the count is set to `0' and is used to

count the number of points on the speci¯ed curve. When the inspected bit of key is

one (ki ¼ 1) and count! ¼ m� 1, then PA is also performed followed by PD from St:

41 to St: 74. St: 40 and St: 74, are also responsible to check the status of the count

Fig. 3. Finite state machine for BHC.
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signal. Once count ¼ m� 1, then the control unit generates signals for the coordi-

nate reconversion step of Algorithm 1. Finally, during St: 75 to St: 126, the coor-

dinate reconversion step of Algorithm 1 including FF inversion (St: 75 to St: 120) is

performed, as shown in Fig. 3.

To compute PM, the initializations step of Algorithm 1 requires six CC. For the

most time consuming part, i.e., for each uni¯ed addition (PA or PD), the proposed

design requires 34 CC. Finally, the reconversion step requires FF inversion (inv) þ
six CC. To calculate the total number of CC, the worst case scenario as presented in

Ref. 4 has been considered i.e., key contains alternate 1 0s and 0 0s. Consequently, the
total number of CC for the proposed architecture can be calculated by using the

expression given in Eq. (3).

6þ 34ðm� 1Þ þ 34
m� 1

2

� �
þ invþ 6 : ð3Þ

The estimated CC using Eq. (3) and the exact CC, which are obtained through

behavioral simulations, are provided in Table 4.

4. Results and Performance Estimation

4.1. Synthesis and place and route results

For our proposed 2-stage pipeline architecture over GF ð2163Þ and GF ð2233Þ, two
Verilog HDL models are created. In ¯rst step, to perform veri¯cations of the pro-

posed Verilog (HDL) design, its behavioral results are compared with its C-based

functional model. The proposed designs are then synthesized on Virtex 4 (xc4vfx140-

11®1517), Virtex 5 (xc5vfx130t-3®1738), Virtex 6 (xc6vlx550t-2®1760) and Virtex 7

(xc7vx690t-3®g1930) devices from Xilinx using ISE (14.7) design suite. The results

after synthesis and place and route for our proposed designs are tabulated in Table 5.

From the two designs, one can also estimate the overall additional hardware cost

while moving from GF ð2163Þ to GF ð2233Þ.
In Table 5, the respective curves are shown in the ¯rst column whereas the

considered FPGA devices are mentioned in column 2. Third column presents the

utilized FPGA area (slices) used. The number of CC to perform one PM operation,

Table 4. CCs information for GF ð2163Þ and GF ð2233Þ.
For GF ð2163Þ For GF ð2233Þ

Operations Estimated Behavioral simulated Estimated Behavioral simulated

Initializations 6 6 6 6
Unif Add 8262 8262 11832 11832

FF Inversion 502 502 709 709

Reconversion 6 6 6 6

Total CC 8776 8776 12553 12553

A. R. Jafri et al.
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computed through Eq. (3), are shown in column 4. Column 5 (results after synthesis)

and column 6 (results after post place and route), are further sub-partitioned into

three subcolumns to present the information about the achieved operational fre-

quency (Freq (MHz), time for one PM i.e., kP . (�s) and throughput/area

(106=k P ðsÞ=slicesÞ ratio).
The time for one PM operation is computed by dividing the CC with operational

frequency and is calculated using the below expression

kP ð�sÞ ¼ Number of Clock Cycles

Freq ðMHzÞ : ð4Þ

Finally, the throughput/slices (106=kP ðsÞ=slicesÞ ratio is obtained by using

Eq. (5) which is considered as a metric to analyze the e±ciency of the architecture.

throughput

slices
¼

1
k:P�10�6ðsÞ
slices

¼
1

k:P ðsÞ � 106

slices
: ð5Þ

4.2. Performance results

For our designs, the number of CC are 8776 and 12553 for GF ð2163Þ and GF ð2233Þ
respectively. Consider the ¯rst case of PM with GF ð2163Þ, implementation on

XC4VFX140. In this case the maximum after synthesis operational frequency is

173MHz which results in 50.7�s to compute on PM. Finally, by using the expression

in Ref. 5, the throughput/area ratio becomes 1.70. On the other hand, if after post

place and route frequency is used, this ratio reduces to 1.07. The performances for

other cases are computed in the same way. The best results are achieved for the

Virtex 7 (xc7vx690t-3®g1930) device, where the throughput/slices metrics are equal

to 11.10 and 4.63 for GF ð2163Þ and GF ð2233Þ, respectively.

Table 5. Implementation results for GF ð2163Þ and GF ð2233Þ on Xilinx Virtex 4, 5, 6 and 7.

Results after
synthesis

Results after post
place and route

Curve Platform Slices

Clock

cycles Freq. (MHz) k:P (�s)
106
sð Þ

Slices Freq. (MHz) k:P (�s)
106
sð Þ

Slices

Results over GF ð2163Þ
BHC XC4VFX140 11567 8776 173 50.7 1.70 109 80.5 1.07

XC5VFX130t 4430 8776 253 34.6 6.52 121 72.5 3.11
XC6VLX550t 4024 8776 301 29.1 8.53 162 54.1 4.59

XC7VX690t 3880 8776 377 23.2 11.10 201 43.6 5.91

Results over GF ð2233Þ
BHC XC4VFX140 17393 12553 162 77.4 0.74 101 124.2 0.46

XC5VFX130t 6676 12553 239 52.5 2.85 116 108.2 1.38

XC6VLX550t 7681 12553 296 42.4 3.07 148 84.8 1.53
XC7VX690t 6342 12553 369 34.0 4.63 191 65.7 2.39
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From the hardware implementation perspective, the result of comparison with the

state-of-the-art is challenging due to the limited relevant published work. However,

similar application is targeted in Refs. 4 and 13 over GF ð2233Þ only. To perform a fair

comparison, we synthesized our design for those FPGAs which were used in

Refs. 4 and 13. The work presented in Ref. 4 performs PM including reconversion,

whereas in Ref. 13 reconversions were not considered while presenting their results.

Consequently, we have performed our comparison with Ref. 4 including the recon-

version steps of Algorithm 1 whereas comparison with Ref. 13 is considered without

reconversion of Algorithm 1. The comparisons with state-of-the-art are presented in

Tables 6 and 7.

As shown in Table 6, our proposed design consumes 17393 slices, which are 85% of

the hardware resources used in Ref. 4 when synthesized over the same Virtex 4

device. This is due to the use of the single `m' bit adder in the data path whereas the

work presented in Ref. 4 utilizes ¯ve `m' bit adders in the data path. Moreover, the

work presented in Ref. 4 uses a total of seven multiplexers in the data path. Out of

these seven multiplexers, two 8:1 multiplexers are used on the inputs of the multi-

plier. Other two 4:1 multiplexers are used for fetching the initial curve parameters

and precomputed values (`�' and `�'), and ¯nally, three 9:1 multiplexers are used for

fetching data from the register ¯le. However, we have used only four multiplexers in

the data path. Out of these four multiplexers, two 16:1 multiplexers are used for

fetching register contents from MU whereas a single 4:1 multiplexer is used for

fetching the initial curve parameters and precomputed values (`�' and `�'). Finally,

the single 2:1 multiplexer is used to update the MU contents.

On the other hand, in the data path of the architecture in Ref. 4, ¯rstly multiple

operators and multiplexer are connected without the pipeline registers. Due to this

fact they achieve a maximum operational frequency of 81MHz which is comparably

50% lesser than our work. Although, the reported time to perform PM in Ref. 4 is

Table 6. Comparison with state-of-the-art for BHC over GF ð2233Þ.

Source Platform Slices Freq. (MHz) Clock cycles k:P (�s)
106
sð Þ

Slices

Ref. 4 Virtex 4 20437 81 5913 73 0.67

Proposed Virtex 4 17393 162 12553 77 0.74

Table 7. Comparison with state-of-the-art for BHC without inversion over

GF ð2233Þ.

Source Platform Slices Freq. (MHz) Clock cycles k:P (�s)
106
sð Þ

Slices

Ref. 13 Virtex 6 7150 172 7370 43 3.25
Virtex 7 6032 183 7370 40 4.14

Proposed Virtex 6 7681 296 11838 39 3.33

Virtex 7 6342 369 11838 32 4.92
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4�s less than the time consumed by our solution, the overall throughput/slices ratio

of our work is 10% higher than the work in Ref. 4.

Another FPGA based solution over newer technologies (Virtex 6 and 7) for BHC

has been presented in Ref. 13, as shown in Table 7. Their work utilizes an area of

6032 slices which is 5% lesser than our design (6342) over Virtex 7. They attain a

maximum operational frequency of 183MHz which is almost half when comparing

with this work (369MHz) using the same technology. To compute each PM, their

design requires 40�s which is comparably 20% higher than the proposed solution

(32�s) over Virtex 7. Finally, they achieved maximum throughput/area ¯gures of

4.14, hence, our solution gives 20% higher throughout/area ratio.

Acknowledgments

This project is funded by NSTIP (National Science Technology, Innovative Plan),

Saudi Arabia. We acknowledge the support of KACST (King Abdul-Aziz City for

Science and Technology) and STU (Science and Technology Unit) Makkah.

References

1. D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography
(Springer-Verlag, New York, 2004).

2. N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987) 203–209.
3. V. Miller, Use of elliptic curves in cryptography, in Proc. CRYPTO 1985, H. C. Williams

ed. Vol. 218, Lecture Notes in Computer Science (1986), pp. 417–426.
4. A. Chatterjee and I. Sengupta, High-speed uni¯ed Elliptic curve cryptosystem on FPGAs

using binary hu® curves, Progress in VLSI Design and Test (VDAT), Lecture Notes in
Computer Science, Vol. 7373 (2012), pp. 243–251.

5. T. Izu and T. Takagi, Exceptional procedure attack on Elliptic curve cryptosystems, in
Y. G. Desmedt eds. Public Key Cryptography — PKC 2003, PKC 2003. Lecture Notes in
Computer Science, Vol. 2567 (Springer, Berlin, Heidelberg, 2002), pp. 224–239.

6. D. J. Bernstein, T. Lange and R. R. Farashahi, Binary edwards curves, 2008.
7. J. Devigne and M. Joye, Binary hu® curves, CT-RSA 2011, Lecture Notes in Computer

Science, Vol. 6558 (2011), pp. 340–355.
8. Z. Dyka and P. Lagendorfer, Improving the security of wireless sensor networks by

protecting the sensor nodes against side channel attacks,Wireless Networks and Security,
Signals and Communication Technology (2013), pp. 303–328.

9. B. Harris, Security intelligence, Last accessed: February 2016, https://securityintelli-
gence.com/platform-as-a-service-paas-cloud-side-channel-attacks-part-i/.

10. T. Kasper, D. Oswald and C. Paar, Side-channel analysis of cryptographic RFIDs with
analog demodulation, RFID. Security and Privacy, Vol. 7055 of the series Lecture Notes
in Computer Science (LNCS), 2012, pp. 61–77.

11. T. H. Kim, T. Takagi, D. Han, H. W. Kim and J. Lim, Side channel attacks and coun-
termeasures on pairing based cryptosystems over binary ¯elds, Cryptology and Network
Security, Lecture Notes in Computer Science, Vol. 4301 (2006), pp. 168–181.

12. M. Imran and M. Rashid, Architectural review of polynomial basis ¯nite ¯eld multipliers
over GF ð2mÞ, IEEE International Conference on Communication, Computing and
Digital Systems, Islamabad, Pakistan, March 2017, pp. 8–9.

Towards an Optimized Architecture for Uni¯ed Binary Hu® Curves

1750178-13

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



13. S. Ghosh, A. Kumar, A. Das and I. Verbauwhede, On the implementation of uni¯ed
arithmetic on binary hu® curves, Cryptographic Hardware and Embedded Systems-CHES
2013, Lecture Notes in Computer Science, Vol. 8086 (2013), pp. 349–364.

14. D. L. Hu®, A probabilistic analysis of shopping center trade areas, Land Econ. 39 (1963)
81–90.

15. M. Joye, M. Tibouchi and D. Vergnaud, Hu®'s model for elliptic curve, Algorithmic
Number Theory (ANTS-IX), Lecture Notes in Computer Science, Vol. 6197 (2010),
pp. 234–250.

16. C. Bach, Elliptic Curves–Double and Add Algorithm, Last accessed: January 2016,
http://hyperelliptic.blogspot.com/2009/06/double-and-add-algorithm.html.

17. M. Rashid, M. Imran and A. R. Jafri, Comparative analysis of °exible cryptographic
implementations, 11th IEEE Int. Symp. Recon¯gurable Communication-Centric
Systems-on-Chip (ReCoSoC), Tallinn, 2016, pp. 1–6.

18. National Institute of Standards and Technology (NIST), Recommended Elliptic Curves
for Federal Government Use (1999), http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/
NISTReCur.pdf.

19. Z. Khan and M. Benaissa, Throughput/area-e±cient ECC processor using Montgomery
point multiplication on FPGA, IEEE Trans. Circuits Syst. II 62 (2015) 1078–1082.

20. T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in GFð2mÞ
using normal bases, J. Inform. Comput. 78 (1988) 171–177.

21. V. Dimitrov and K. Jarvinen, Another look at inversions over binary ¯elds, 21st IEEE Int.
Symp. Computer Arithmetic (ARITH21), Austin, 2013, pp. 211–218.

22. L. Parrilla, A. Lloris, E. Castillo and A. Garcia, Minimum-clock-cycle Itoh-Tsujii algo-
rithm hardware implementation for cryptography applications over GFð2mÞ ¯elds,
Electron. Lett. 48 (2012) 1126–1128.

A. R. Jafri et al.

1750178-14

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.


	Towards an Optimized Architecture for Unified Binary Huff Curves&lowast;
	1. Introduction
	2. Preliminaries
	2.1. BHC over GF(2m)
	2.2. Unified addition law over GF(2m)
	2.3. PM on BHC

	3. Proposed Crypto Processor for BHC
	3.1. Memory unit
	3.2. Arithmetic and logic unit
	3.3. Routing networks
	3.4. Choices for pipeline inclusion
	3.5. Control unit (CU)

	4. Results and Performance Estimation
	4.1. Synthesis and place and route results
	4.2. Performance results

	Acknowledgments
	References


