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Abstract The present analysis examines the combine ef-
fects of thermal radiation and velocity slip along a
convectively nonlinear stretching surface. Moreover,
MHD effects are also considered near the stagnation point
flow of Casson nanofluid. Slipped effects are considered
with the porous medium to reduce the drag reduction at
the surface of the sheet. Main structure of the system is
based upon the system of partial differential equations
attained in the form of momentum, energy, and concen-
tration equations. To determine the similar solution sys-
tem of PDEs is rehabilitated into the set of nonlinear or-
dinary differential equations (ODEs) by employing com-
patible similarity transformation. Important physical pa-
rameters are acquired through obtained differential equa-
tions. To determine the influence of emerging parameters,
resulting set of ODE’s in term of unknown function of
velocity, temperature, and concentration are successfully
solved via Keller’s box-scheme. All the obtained un-
known functions are discussed in detail after plotting the
results against each physical parameter. To analyze the
behavior at the surface: skin friction, local Nusselt and
Sherwood numbers are also illustrated against the velocity
ratio parameter A, Brownian motion Nb, thermophoresis
Nt, and thermal radiation parameters R. Results obtained

from the set of equations described that skin friction is
decreasing function of A , and local Nusselt and
Sherwood number demonstrate the significant influenced
by Brownian motion Nb, thermophoresis Nt, and radiation
parameters R.

Keywords Axisymmetric . Radially stretched . Stagnation
point . Casson nanofluid . Convective condition . Slip
condition

1 Introduction

Boundary layer flow induced by a continuous stretching sheet
gained considerable attraction in the past few decades due its
extensive applications in many engineering processes. Some
examples of practical applications of moving stretching sur-
faces are wire illustration, paper and sheet production, hot
rolling materials, solidification of liquid crystals, daily usage
goods in kitchen, glass and fiber production, etc. In the light of
above said application, initially Sakiadis [1, 2] demonstrates
the application of boundary layer flow for continuous
stretching sheet that is moving with a uniform speed. After
that, Crane [3] reported an elegant analytical solution for
boundary layer phenomena induced due to a stretching sheet.
Due to various numerous and industrial applications, Crane’s
work has been considered by various researchers under vari-
ous physical aspects and different sheets. Currently, few more
usable flows that past over a stretching sheet with difference
ratio are exponential, nonlinear, quadratic, and oscillatory
[4–7] are under consideration in current era.

In fluid mechanics, the stagnation point is the location
where the local velocity tends to zero. Usually, stagnation
points appear at the surface of any object in the flow field,
where velocity of the fluid becomes zero due to that

* Rizwan Ul Haq
rizwanulhaq.buic@bahria.edu.pk

1 Department of Mathematics, Osmania University,
Hyderabad, Telangana, India

2 Department of Electrical Engineering, Bahria University,
Islamabad 44000, Pakistan

3 Department of Mathematical Sciences, UAE University, Al
AinP.O. Box 15551, United Arab Emirates

Neural Comput & Applic
DOI 10.1007/s00521-017-2992-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-2992-x&domain=pdf


object. The highest fluid pressure, rate of heat, and mass
deposition are occurred in the stagnation region.
Stagnation point flow analysis is very important both in
natural and industrial phenomena. Some of the examples
of stagnation point flow are flows over the tips of subma-
rines, tip of ships, and front tip of rockets and aircrafts. In
biology, an interesting example of stagnation point flow is
the blood vessel at branch or sub-branch position, where it
divides the blood flow in two or more different directions.
Hiemenz [8] initially intended the idea for two-
dimensional stagnation flow. After that, axisymmetric
case was discussed by Homann [9]. The axisymmetric
stagnation point flow is important and technically sound
mechanism, for instant where flow distribution in two
equal portions and skin-friction with heat and mass trans-
fers near the stagnation region of object with high-speed
flow. Moreover, the design of thrust bearings and radial
diffusers, drag reduction near the edge of corner, transpi-
ration cooling, and thermal oil recovery are also vital ap-
plications of stagnation point.

In the past few years, nanofluids have been studied
vastly due to its multifaceted application in all fields of
science and latest technology. Apart from technology,
nanofluid commonly use in biomedical to targeting the
cancer cells via nanoscale drug delivery system and also
helps to diagnose the blood flow blockage in the arteries
through thallium scan (radioactive tracer). Renewable en-
ergy is another very important and useful application of
nanofluid to refine the waste materials. In addition, the
fluids with high thermal conductivity are required in heat
transfer applications. In view of this, Hunt [10] investi-
gated to collect solar energy using small particles. Masuda
[11] found that the liquid dispersions of submicron parti-
cles or nanometer-sized particles boosting the enhance-
ment of thermal conductivity. Thermal performance of
any liquid can enhance appreciably by suspending the
nanoparticles within the working fluids. For instance,
thermal conductivity of industrial liquid such as water,
ethylene glycol, and engine oil is comparatively low as
compare to the solid tiny particles, namely metals oxides,
carbides, nitrides ,or nonmetals (graphite, carbon nano-
tubes) . So uniform suspension of t iny part icles
(nanoparticles) having a size 1 to 100 nm within a con-
vectional base fluid is called nanofluid [12]. The purpose
of production of nanofluid by suspending nanoparticles in
base fluid is to increase heat transfer. Due to higher ther-
mal performance, nanofluids have already been used in
various industrial applications [13–15]. Buongiorno [16]
extended the idea of Choi [12] and proposed the mathe-
matical model for convective transport in nanofluids. In
his work, he has presented that nanofluids have higher
thermal conductivity compared to base fluids, also he re-
veals the reason behind this massive increase in the

thermal conductivity and concluded that Brownian diffu-
sion and thermophoresis are main causes for the incre-
ment in heat transfer. Some review studies concerning
the ana lys i s of nanof lu ids can be observed in
Daungthongsuk and Wongwises [17], Wang and
Mujumdar [18, 19], and Kakac [20]. Using the
Buongiorno’s model, the classical problem of two dimen-
sional flow of nanofluid is investigated by Kuznetsov and
Nield [21] for the vertical flow and later on this idea is
intended for horizontal surface purposed by Khan and Pop
[22]. In another study, Aziz [23] introduced the idea of
using convective surface boundary condition to investi-
gate the boundary layer flow of the Blasius problem over
a flat surface. Makinde and Aziz [24] addressed the
boundary layer flow induced in a nanofluid by imposing
the convective condition induced by stretching sheet.
Mustafa et al. [25] and Wubshet et al. [26] examined the
stagnation point flow of nanofluid past a stretching sheet.
From these studies, we can observe that the velocity
boundary layer thickness increases, when the free stream
velocity is exceeding the stretching velocity. Apart from
abovementioned study, applications of nanofluid have
been proven according to various physical geometries
and models [27–40].

All the aforementioned studies were confined to the
traditional flows of Newtonian fluids. Non-Newtonian
fluids have gained appreciable interest due to their indus-
trial applications. In real life, there are some materials
such as melts, muds, printing ink, condensed milk, glues,
soaps, shampoos, sugar solution, paints, etc. are catego-
rized as non-Newtonian fluids, and the physical structures
of such fluids are diverted from Newtonian law of viscos-
ity. Due to this, there is no particular model that can de-
pict all the rheological characteristics of non-Newtonian
fluid and all the characteristics of non-Newtonian fluids
cannot be constituted in a single equation, hence various
models have been proposed by researchers to study such
fluids. Among all the Newtonian and non-Newtonian
models, Casson fluid is a simple non-Newtonian fluid
model that associate the properties of differential type
fluids which exhibits a yield stress, and it perform like a
solid when low shear stress is applied; however, it starts
to deform when shear stress becomes greater than the
yield stress. Casson [41] introduced this rheological mod-
el. Some studies include Casson fluid can be found in
[42–47]. Mustafa and Khan [48] examined a non-
Newtonian nanofluid induced by a stretching sheet with
nonlinear velocity by considering magnetic field effects.
Recently, several studies indicate the validation of
Newtonian and non-Newtonian fluid in the presence of
nanoparticles [49–52].

Based upon abovementioned studies, main determina-
tion of our model is to deal the Casson fluid model over
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a nonlinear stretching sheet in the presence of slip effects.
Thermal radiation and convective boundary condition are
also considered at the bottom of surface. Brownian motion
and thermophoresis effects are also taken into account to
deal the nanoparticles dispersion within the Casson fluid.
Self-similar solutions are presented which are obtained via
Keller-Box method. In Section 3, detail behavior of veloc-
ity, temperature, and nanoparticle volume concentration
are discussed in sight of emerging parameters.

2 Mathematical formulation

Consider, steady, incompressible, MHD two dimensional flow of
Casson nanofluid over a nonlinear radially stretching sheet
through porousmedium. The fluid is takenwithin the half plane z-
> 0 , and the flow is generated due to radially stretching of the
sheet with a velocity uw= ar

n, U= crn is the free stream velocity
distribution. Further, it is assumed that sheet is heated with con-
stant temperature Tw ; whereas, T∞ is the ambient fluid’s temper-
a t u r e s u c h t h a t T w > T ∞ . S i m i l a r l y , f o r
concentration Cw and C∞ denote the nanoparticle volume fraction
and ambient value of nanoparticle volume fraction, respectively.
Magnetic field effects are also considered normal to the surface,
and its vector form is B ¼ 0; 0; B0½ �. Under the shed of said
assumptions, the obtained boundary layer equations that govern
the continuity, momentum equation for Casson fluid model [41],
energy, and nanoparticle volume concentration [49] can be
expressed as

∂u
∂r

þ u
r
þ ∂w

∂z
¼ 0 ð1Þ

u
∂u
∂r

þ w
∂u
∂z

¼ ν 1þ 1

β

� �
∂2u
∂z2

þ U
∂U
∂r

þ νλ
k

U−uð Þ þ σB2
0

ρ
U−uð Þ ð2Þ

u
∂T
∂r

þ w
∂T
∂z

¼ α
∂2T
∂z2

þ τDB
∂C
∂z

∂T
∂z

þ τ
DT

T∞

∂T
∂z

� �2

−
1

ρcp

∂qr
∂z

ð3Þ

u
∂C
∂r

þ w
∂C
∂z

¼ DB
∂2C
∂z2

þ DT

T∞

∂2T
∂z2

ð4Þ

Table 1 Comparison of f′′(0) and−θ′(0) with Khan et al. [49] when Nt = Sc = 0 ,Nb = 10−10 and A = 0 , β→ ∞ , γ = δ =R = 0 , Bi→∞

n M K s Pr f′′(0) −θ′(0)

HAM
[49]

Numerical
calculation
[49]

Present
results

HAM
[49]

Numerical
calculation
[49]

Present
results

0.5 1.0 0.5 0.5 0.7 −2.48106 −2.48103 −2.48107 0.95552 0.95552 0.95552

1.0 1.0 0.5 0.5 0.7 −2.65452 −2.65449 −2.65452 1.06456 1.06456 .06456

2.0 1.0 0.5 0.5 0.7 −2.98936 −2.98934 −2.98937 1.27601 1.27601 1.27601

0.5 0 0.5 0.5 0.7 −2.98936 −2.98934 −2.22275 0.97776 0.97777 0.97777

0.5 0.5 0.5 0.5 0.7 −2.35611 −2.35608 −2.35611 0.96601 0.96601 0.96601

0.5 1.0 0.5 0.5 0.7 −2.48106 −2.48103 −2.48107 0.95552 0.95552 0.95552

0.5 1.0 0.25 0.5 0.7 −2.92005 −2.91999 −2.92006 0.92239 0.92239 0.92239

0.5 1.0 0.5 0.5 0.7 −2.48106 −2.48103 −2.48107 0.95552 0.95552 0.95552

0.5 1.0 1.12 0.5 0.7 −2.22274 −2.22272 −2.22275 0.97777 0.97777 0.97777

0.5 1.0 0.5 0.5 0.7 −2.48106 −2.48103 −2.48107 0.95552 0.95552 0.95552

0.5 1.0 0.5 0 0.7 −1.98301 −1.98299 −1.98301 0.47140 0.47138 0.47138

0.5 1.0 0.5 −0.5 0.7 −1.57761 −1.57760 −1.57761 0.07525 0.07525 0.07526

0.5 1.0 0.5 0.5 0.7 0.95552 0.95552 0.95552

0.5 1.0 0.5 0.5 1.0 −2.48107 1.31649 1.31649 1.31650

0.5 1.0 0.5 0.5 1.2 −2.48107 1.54791 1.54791 1.54791

Fig. 1 Geometry of the model
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In the above set of equations, u and w are compo-
nents of velocities in both radial and axial direction,

respectively. The parameters ν; β ¼ μB
ffiffiffiffiffi
2πc

p
py

; σ; α ¼ k1
ρcp
;

λ; k; k1; ρ; DB;DT ; τ ¼ ρcð Þp= ρcð Þ f are the kine-

matic viscosity, Casson fluid parameter, electrical con-
ductivity, porosity, permeability of the porous medium,
thermal diffusivity, thermal conductivity, density,
B rown ian mo t i on , d i f f u s i on coe f f i c i e n t , and
thermophoretic diffusion, and τ is the nanoparticle heat
capacity to heat capacity of base fluid, respectively.
Using Rosseland approximation for radiation, we can

write qr ¼ − 4σ*

3k*
∂T4

∂z with σ* is Stefan-Boltzmann param-

eter and k* is denoted for mean absorption coefficient.
Expansion of Taylor ’s series by considering the

origin T∞ and by discarding the highest order expres-
sions we get:

qr ¼ −
16σ*T 3

∞

3k*
∂T
∂z

ð5Þ

Then energy Eq. (4) takes the following form

u
∂T
∂r

þ w
∂T
∂z

¼ α
∂2T
∂z2

þ τDB
∂C
∂z

∂T
∂z

þ τ
DT

T∞

∂T
∂z

� �2

þ 16σ*T3
∞

3k*ρcp

∂2T
∂z2

ð6Þ

Fig. 5 Temperature profile for various values velocity ratio A
Fig. 3 Variation in velocity with respect to various values of Casson
parameter β

Fig. 4 Variation in velocity with respect to various values of velocity
ratio parameter A

Fig. 2 Variation in velocity with respect to various values of Hartmann
number M
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The corresponding boundary conditions for the above
problem are

z ¼ 0 : u ¼ uw þ uslip;w ¼ −Vw; −k
∂T
∂Z

¼ hf T f −T
� �

; C ¼ Cw þ B
∂C
∂z

; z→∞ : u→U

¼ crn; T→T∞;C→C∞ ð7Þ

We introduce the following similarity transformations

u ¼ arn f
0
ηð Þ;w

¼ −ar
n−1
2

ffiffiffiffi
ν
a

r
nþ 3

2
f ηð Þ þ n−1

2
f
0
ηð Þ

� �
; η

¼
ffiffiffiffi
a
ν

r
r
n−1ð Þ

.
2
z; θ ¼ T−T∞

T f −T∞
;ϕ ¼ C−C∞

Cw−C∞
ð8Þ

By means of Eq. 7, Eq. 1 is identically satisfied, and the
Eqs 2, 3 and 4 are reduced to nonlinear ordinary differential
equations as follows.

1þ 1

β

� �
f ′′′ þ nþ 3

2
f f ′′−nf ′2 þ nA2 þ M þ 1

K

� �
A− f ′
� � ¼ 0 ð9Þ

1þ 4R
3

� �
θ″ þ nþ 3

2
Pr f θ

0 þ PrNbθ
0
ϕ

0 þ PrNtθ02 ¼ 0 ð10Þ

ϕ″ þ nþ 3

2
Sc f ϕ

0 þ Nt
Nb

θ″ ¼ 0 ð11Þ

Dimensionless form of boundary conditions is

f 0ð Þ ¼ s; f
0
0ð Þ ¼ 1þ γ 1þ 1

β

� �
f ″ 0ð Þ; f 0

∞ð Þ→A;

θ
0
0ð Þ ¼ −Bi 1−θ 0ð Þ½ �; θ ∞ð Þ→0;

ϕ 0ð Þ ¼ 1þ δϕ
0
0ð Þ; ϕ ∞ð Þ→0:

9>>=
>>;

ð12Þ

Fig. 7 Effect of Biot number Bi on ϕ(η) Fig. 9 Effect of velocity slip parameter on θ(η)

Fig. 8 Effect of velocity slip parameter γ on f′(η)Fig. 6 Effect of Biot number Bi on θ(η)
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where M ¼ σB2
0r

1−n

ρa magnetic parameter, A ¼ c
a velocity ratio,

K ¼ karn−1
νφ is local permeability parameter, Pr ¼ ν

α is Prandtl

number, R ¼ 4σ*T3
∞

k1k*
is the radiation parameter, Nt ¼

ρcð ÞpDT
T f −T∞ð Þ

ρcð Þ f T∞ν
i s t h e rmopho r e s i s p a r ame t e r , Nb ¼

ρcð ÞpDB
Cw−C∞ð Þ

ρcð Þ f T∞ν
is the Brownian motion parameter, Sc ¼ ν

DB
is

the Schmidt number, γ ¼ μB
ffiffia
ν

p
is velocity slip factor,

Bi ¼ h f

k is Biot number, δ ¼ B
ffiffia
ν

p
is solutal slip factor, s

¼ 2Vwr n−1ð Þ =2
nþ3ð Þ ffiffiffiffi

aν
p local mass transfer rate, s > 0 for suction,

and s < 0 for injection. To analyze the behavior of fluid at
surface results are constructed for physical quantity of interest.

C f ¼
μB þ

pyffiffiffiffiffiffiffi
2πc

p
� �

∂u
∂z

	 

z¼0

ρu2w
;Nu ¼

−r ∂T
∂z þ 16σ*T3

∞
3k*ρcp

∂2T
∂z2

	 

z¼0

T f −T∞
� � ;

Sh ¼
−r ∂C

∂z

	 

z¼0

DB Cw−C∞ð Þ

ð13Þ

After applying the similarity transformation, we get

C f
ffiffiffiffiffiffiffi
Rer

p ¼ 1þ 1

β

� �
f ″ 0ð Þ; Nuffiffiffiffiffiffiffi

Rer
p

¼ − 1þ 4

3
R

� �
θ
0
0ð Þ; Shffiffiffiffiffiffiffi

Rer
p ¼ −ϕ

0
0ð Þ ð14Þ

Fig. 11 Effect of Nt on ϕ(η) Fig. 13 Effect of Nb on ϕ(η)

Fig. 12 Effect of Nb on θ(η)Fig. 10 Effect of Nt on θ(η)
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where, Rer ¼ uwr
ν is the Reynold number.

3 Results and discussion

The system of nonlinear ordinary differential Eqs 9, 10,
and 11 together with the boundary conditions Eq. (12) are
solved numerically by using Keller-Box Method. A com-
parison study has been made with the previous results,
and an excellent agreement can be seen in Table 1. The
prime objective of this section is to discuss the behavior
of various parameters such as magnetic parameter M,
Casson fluid parameter β, nonlinear stretching parameter
n, velocity ratio parameter A, Biot number Bi, momentum
slip γ, solutal slip δ, radiation parameter R, suction/
injection parameter s, the Prandtl parameter Pr, the
Brownian motion Nb, the thermophoresis parameter Nt,

and the Schmidt number Sc on velocity profile f′(η), tem-
perature profile θ(η), and concentration profile ϕ(η).

Figure 2, illustrates the variation of velocity profile f′(η) for
variable values of magnetic field parameter M by fixing the
remaining parameters. It can be observed that increase in mag-
netic field reduces both the velocity profile f′(η) and boundary
layer thickness. Since magnetic field produces a reverse force
known as Lorentz force, and this force produce the resistance
against the motion of the fluid particles and hence the velocity
of fluid reduces. Figure 3 exhibits the impact of β on velocity. It
is analyzed that with an increase in β, in general velocity be-
havior decreases; however, near the surface of the sheet veloc-
ity depicts the increasing behavior due to slip condition at the
surface. As we increase in β leads to decrease yield stress which
allows less resistance to the fluid motion.

Since, velocity ratio parameter A plays a dominant role
on velocity that is described Fig. 4. Ratio of free stream

Fig. 15 Effect of radiation parameter R on θ(η) Fig. 17 Effect of Sc on concentration profile ϕ(η)

Fig. 16 Effect of solutal slip parameter δ on Concentration profile ϕ(η)Fig. 14 Effect Prandtl number Pr on θ(η)
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velocity to the stretching velocity is defined in term
of A so it can be figure out that velocity is split into two
parts when A > 1 and for A < 1. It is finally conclude that
for both cases velocity depicts increasing behavior.
Similarly, Fig. 5 is plotted for temperature field, against
the increase in the values of A. Variation of temperature
against Biot number Bi is plotted in Fig. 6. In general,
parameter Bi depends upon characteristic length of the
surface, thermal conductivity of the surface, and convec-
tive heat transfer of the hot fluid below the surface.
Higher Biot number Bi represents the constant wall tem-
perature at the surface, whereas smaller Biot number Bi
indicates higher conductive materials which include alu-
minum, iron, and steel etc. For higher values of Biot
number gives rise in temperature and extends the thermal
boundary layer thickness. Figure 7 exhibits the impact
of Bi on nanoparticle volume concentration ϕ(η). The

stronger convection at the sheet leads to enhance temper-
ature gradient at the surface.

Figures 8 and 9 are plotted to analyze the impact of
momentum slip parameter γ on velocity profile f′(η), and
temperature profile θ(η), respectively. As we increase the
values of γ, momentum boundary layer rises however
surface velocity shows the decreasing behavior. This
mechanism take place due to the fact that stretching ve-
locity is partially transferred the disturbance from friction-
al retardation between the surface and fluid’s particles and
consequently, the velocity of the fluid reduced. So veloc-
ity profile decreases. But reverse is true for temperature
profile θ(η) i.e., by improving the values of slip parameter
provides the thicker boundary layer. It is found that tem-
perature is increasing function of γ due to significant en-
hancement in temperature. This phenomenon happened
due to change in velocity slip, and hence, it reduces the

Fig. 19 Effect of local permeability parameter K on f′(η) Fig. 21 Effect of injection s ≤ 0 on f′(η)

Fig. 20 Effect of suction s ≥ 0 on f′(η)Fig. 18 Effect of nonlinear stretching Parameter n on f′(η)
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thermal conductivity of the working fluid. Figures 10 and
11 are drawn to analyze the influence of thermophoresis
parameter Nt on θ(η) and ϕ(η), respectively. It can visu-
alize that raising the values of Nt leads to enhance the
temperature and nanoparticle volume concentration (see
Figs. 10 and 11). It is found that Nt significantly increase
the heat transfer at the surface due movement of nanopar-
ticles from hot to cold region.

The effects of Brownian motion Nb on θ(η) and ϕ(η) are
presented in Figs. 12 and 13. Since the Brownian motion is a
random motion in which the kinetic energy of the particles in-
creases, as a result shows an increase in particle collision. As a
consequence that temperature and boundary layer thickness en-
hances for large values of Brownian motion Nb, however these
results depict reverse for nanoparticle volume concentration.
Variations in temperature profile with the effect of Prandtl num-
ber Pr is illustrated in Fig. 14. Since Pr is inversely proportional
to thermal diffusivity therefore it can found in Fig. 14 that rapid
increase in Pr leads to decrease in the temperature θ(η).

The variation in temperature profile with the enhance-
ment for a set of values of thermal radiation parameter R
is presented in Fig. 15. It is observed from the figure that
temperature grows up for stronger thermal radiation
parameter R. It is happened due to the increment in sur-
face heat flux under the influence of thermal radiation and
which leads to increase temperature profile inside the
boundary layer region. Figures 16 and 17 exhibits the
effect of solutal slip parameter δ and the Schmidt number
on nanoparticle volume concentration, respectively, and it
is obvious in Fig. 17 that concentration profile is reducing
with respect to increasing values of solute slip parameter δ
and Schmidt number Sc.

In Figs. 18 and 19, velocity f′(η) is plotted against the
similarity variable η with variable values of power law
index n and local permeability parameter K, respectively.
From the figures, increasing the values of both n and
K leads to decrease in velocity profile. Figures 20 and
21 illustrate the influence of suction/injection on f′(η),
and it is found that for s > 0 velocity shows the decreasing

Fig. 22 Variation of a stream
lines and (b) isotherms

Table 2 Numerical values of −f′′(0) and −θ′(0) for different values of
A , β , γ ,M when Pr = 2.0 , Nt = Nb = 0.5 , Sc = 3.0 , n = 0.5 , δ = 0.3 ,
Bi = 0.5 , R = 0.2 , n = k = s = 0.5

A β γ M −f′′(0) −θ′(0)

0.1 0.73177 0.36048

0.3 0.57908 0.36790

0.5 0.42031 0.37383

0.5 0.47505 0.36442

2.0 0.82328 0.36421

3.0 0.90298 0.36406

0.2 0.78900 0.36704

0.4 0.56223 0.36245

0.6 0.43761 0.35963

0 0.61576 0.36593

2.0 0.68856 0.36323

3.0 0.71540 0.36223

Table 3 Numerical values of −ϕ′(0) and −θ′(0) for different values of
Pr ,Nt ,Nb, and Bi

Pr Nt Nb Bi −θ′(0) −ϕ′(0)

0.8 0.30162 1.56111

1.0 0.31845 1.55200

3.0 0.38640 1.51031

0.2 0.37024 1.60395

0.5 0.36443 1052479

0.7 0.35816 1.45106

0.1 0.38504 0.90639

0.4 0.36989 1.48588

0.7 0.35291 1.56956

0.5 0.36443 1.52479

1.0 0.55909 1.45591

5.0 0.91664 1.33678
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behavior while s > 0 velocity shows increasing behavior
within the boundary layer. Flow and temperature behavior
in the restricted domain are plotted through stream lines
and isotherms (see Fig. 22).

Table 2 is presented to explore the impact of velocity ratio
parameterA, Casson fluid parameter β, velocity slip
parameter γ, magnetic parameterM on skin friction coeffi-
cient, and Nusselt number. It is observed that with an enhance-
ment in M, skin friction decrease that is quite opposite in the
Nusselt number. From Table 3, we can conclude that Nusselt
number−θ′(0) is an increasing function of Prandtl number Pr,
but Sherwood number decreases with increase in the values of
Pr. Moreover both Nusselt and Sherwood numbers are re-
duced with an enhancement in Nt; whereas, Nusselt number
decreases for stronger Brownian motion but Sherwood num-
ber −ϕ′(0) increase. As the Bi value increase, −θ′(0) increase
but it is reverse in Sherwood number.

4 Conclusions

The present study investigates axisymmetric stagnation point
flow of MHD Casson nanofluid over a radially nonlinear
stretching sheet with the effect of radiation and convective
boundary conditions. Using the similarity transformations,
the governing equations were transformed to nonlinear ordi-
nary differential equations. Further, these equations are solved
numerically. The main findings from this study are as follows.

& Velocity profile is reduced with the effect of Casson fluid
parameter β, i.e., velocity profile increases with increase
in β.

& Parameter A andM shows the opposite effects on velocity
profile.

& Similar impact of Bi on temperature and concentration
profile is observed.

& Appreciable effects of slip and Casson fluid parameter are
observed on Skin friction.

& As we increase in the values of Schmidt number Sc and
Nb, concentration boundary layer thickness decreases.
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