
Security Framework of Ultralightweight Mutual Authentication

Protocols for Low Cost RFID tags

Madiha Khalid
Department of Electrical Engineering

Bahria University, Islamabad

Email: madiha.khalid88@gmail.com

Umar Mujahid
Department of Cyber Security

Gwinnett-Tech, Alpharetta, Georgia 30005

Email: ukhokhar@gwinnetttech.edu

Abstract—RFID is one of the rapidly growing identification

schemes. Unique identification, non-line of sight capability

and functional haste result its massive deployment in many

supply chain applications. Because of limited computational

capabilities at tag side Ultra lightweight protocols are the only

solution to ensure secure communication in RFID systems.

In this paper we have presented a detailed working of three

eminent UMAPs. Further, a generic desynchronization attack

model on these UMAPs has been discussed. Then finally,

a novel security framework for low cost UMAPs has been

presented to avoid all possible desynchronization attacks. The

proposed security model is generic in nature therefore can be

implemented to all upcoming UMAPs as well.

1. Introduction

The RFID systems are one of the widely deployed iden-
tification systems in the field of ubiquitous computing. The
main advantage of RFID tags over bar codes and magnetic
tapes is non-line of sight requirement for scanning. There
are three main components of RFID network; RFID Tags,
a Reader and Database. Tag on entering the vicinity of
reader communicates with it on wireless channel. Database
provides reader information of tag for identification [1].
Applications of network includes identification, tracking and
inventory of item to which tags are attached.

Massive deployment of RFID systems is mainly
limited by confidentiality issues. If the communication chan-
nel between reader and tag is not secure, then based on
the information being exchanged a third party can invade
tag′s location and tracking privacy. Modern ciphers using
hash functions and random number generators despite being
effective, cannot be implemented, as low cost passive RFID
systems have limited power and computational resources. A
typical systems can only store few hundreds of bits and
have 5K to 10K logic gates available, but only 250 to
3K logic gates can be used for implementation of secu-
rity protocol[2],[3]. Ultralight weight Mutual Authentication
Protocol (UMAP) provide the only solution to the problem.
In this class of protocol only bit wise operations like XOR,
AND, OR and addition mod 2m are used.The resources
consumed by UMAPs are within the 3K logic gates limit.

Three main types of algorithms falling under the umbrella
of UMAPs using triangular functions are i.e. Lightweight
Mutual Authentication Protocol (LMAP), Minimalistic Mu-
tual Authentication Protocol (M2AP) and Efficient Mutual
Authentication Protocol (EMAP) [2], [4], [5] .UMAPs pro-
vide extremely low security due to the use of imbalance
functions (AND,OR) but the resources being consumed are
minimum.

In order to improve the security, UMAPs are evolv-
ing with time. There is an elaborated list of UMAPs using
‘Non-Triangular Ultralightweight primitives’ (rotation, re-
cursive hash, permutation) which includes Strong Authenti-
cation Strong Integrity Protocol (SASI), Robust Confiden-
tiality, Integrity, and Authentication (RCIA) Protocol and
Succinct and Lightweight Authentication Protocol (SLAP)
[3], [6], [7]. This class of protocols provide comparatively
better security than UMAPs using T-functions.

Desynchronization Attack is one of the most com-
mon security threat to tags. Under this attack, tag is deac-
tivated for the valid reader and hence cannot be identified
or tracked. In this paper, first we will discuss some major
non triangular UMAPs, and then propose a generic security
patch for protocols to avoid desynchronization attack. Secu-
rity analysis of this patch with respect to SASI, RCIA and
SLAP will also be presented.

The organization of paper is as follows: In Section
2, we will discuss eminent UMAPs followed by desynchro-
nization attacks on these protocols in Section3. In Section
4, a novel security patch to avoid this security threat is
presented. Finally conclusion has been discussed in Section
5.

2. Ultralightweight Mutual Authentication

Protocols (UMAPs)

UMAPs using T-functions are more prone to
desynchronization attacks. Recent UMAPs use non
triangular functions such as rotation, recursive hash and
conversion function [3],[6],[7]. These are relatively stronger
ciphers but desynchronization attack is still very common.
In all protocols to be discussed we will consider following
assumption:

978-1-5090-4448-1/17/$31.00 ©2017 IEEE 26

2017 International Conference on Communication, Computing and Digital Systems (C-CODE)

1. UMAPs are applied on communication channel between
reader and tag.

2. Length of all pseudonyms, identifiers and keys is 96 bits
as per EPC global standard [2.25].

3. Rot (x,y) used in protocols is defined by cyclic left
rotation of x by hamming weight of y.

2.1. SASI

In SASI protocol, reader has access to index pseudonym
(IDS), two keys (K1/K2) and ID associated with
tag. Tag stores all the variables that reader has as
(IDSn,K1n,K2n, ID). It also keeps a copy of previous
pseudonyms and keys as (IDSo,K1o,K2o). SASI protocol
executes in three steps [3]:

I. Tag Identification: When Tag enters the vicinity of
reader, it receives a “Hello′′ message. Tag replies
with its IDSn. Reader searches for this value in the
database. If match is found, protocol proceeds to next
step. Otherwise IDS is enquired again by reader. This
time tag sends IDSo. In case of mismatch at reader
end protocol is terminated.

II. Mutual Authentication: Once tag is identified, reader
generates two random numbers n1 and n2. With the
help of these numbers following values are calculated
and A‖B‖C is transmitted to the reader.

A = IDS ⊕K1 ⊕ n1

B = (IDS ∨K2) + n2

K1 = rot(K1 ⊕ n2,K1)

K2 = rot(K2 ⊕ n1,K2)

C = (K1 ⊕K2) + (K1 ⊕K2)

Tag extracts value of n1 and n2 from A and B re-
spectively and calculates C locally (C ′). If C ′ = C,
reader is authenticated else the protocol is terminated.
After reader authentication, tag send message D. The
protocol proceeds to third step only when D is equal
to locally calculated value D(D′) at reader end.

D = (K2 + ID)⊕ ((K1 ⊕K2) ∨K1)

III. Pseudonym and Key Updating: In the last stage
of SASI, the values related to tag are updated on
both sides. On the tag side following computation is
performed.

IDSo = IDSn,K1o = K1n,K2o = K2n

IDSn = (IDS + ID)⊕ (n2 ⊕K1)),K1n = K1

K2n = K2

Finally the reader is updated according to following
equation.

IDS = (IDS + ID)⊕ (n2 ⊕K1)),K1 = K1,K2 = K2

Figure 1. Working Of SASI Protocol

TABLE 1. STEPS FOR RECURRSIVE HASH

Step 1: Division in l bit Chunks

Group l bits of variable to form
K (K= n/l =8) chunks of data.

Step 2: Calculation of Seed

Seed = I = wt(R)modK

Step 3: XOR and Rotation operation

(i) Calculate XOR of KIth block with all
other block except for itself

(ii) Rot(KI ,KI)
Concatenating all the blocks output will

form the result of recursive hash

SASI Protocol execution steps are presented in Figure
1.

2.2. RCIA

Robust Confidentiality, Integrity and Authentication
(RICA) [6] protocol offers confusion and diffusion feature
in data to be transmitted. This ability in protocol is due to
a new primitive called recursive hash (Rh(X)). Recursive
hash (Rh) of any n bit variable X is elaborated in Table 1.
Inputs required for the function.
Input binary sequence X = xnx(n−1)x(n−2)..x1

Number of bit in variable = n = 96 bits
Number of bits per chunk = l = 12 bit
R = n1 ⊕ n2 (where n1 and n2 are the random numbers
generated by the reader)

RCIA executes in following steps:

I. Tag identification: Reader sends “Hello′′ message to
the tag. Tag replies with its latest index pseudonym

27

IDSn. If reader finds data against IDSn, proto-
col moves towards authentication phase otherwise tag
send IDSo to reader on second request for index
pseudonym. If match is not found in database protocol
terminates.

II. Mutual Authentication: In this step, reader gener-
ates two random numbers n1 and n2. By using these
numbers and keys corresponding to accepted IDS
following variables are calculated.

A = Rot(IDS,K1)⊕ n1

B = (Rot(IDS ∧ n1,K2) ∧K1)⊕ n2

R = n1 ⊕ n2

K∗

1 = Rot(Rh(K2), Rh(n1)) ∧K1

K∗

2 = Rot(Rh(K1), Rh(n2)) ∧K2

C = Rot(Rh(K
∗

1), Rh(K
∗

2)) ∧Rot(Rh(n1), Rh(n2))

Message transmitted to tag is A‖B‖C. A and B are
used to extract random numbers n1 and n2. C is
calculated at tag (C ′) locally. If C ′ = C, reader is
authenticated and D message is sent to reader. If C ′

is not equal to received value, protocol end.

D = (Rot(Rh(ID),K∗

1) ∧ (Rot(Rh(K
∗

2), Rh(n2))⊕ IDS)

Local value of D(D′) is calculated at reader side
for tag authentication. After successful authentications,
protocol proceeds to next step.

III. Variable Updating:Values of index pseudonyms and
keys are updated according to given equation on both
sides.

IDSo = IDSn,K1o = K1n,K2o = K2n

IDSn = Rot(Rh(IDS)⊕ n2, n1),K1n = K∗

1 ,K2n = K∗

2

2.3. SLAP

Succinct and Lightweight Authentication Protocol
(SLAP) [7] aims to provide enhanced diffusion in exchanged
messages between reader and tag. The protocol uses a
new primitive called conversion (Con(X,Y)). Four major
properties of this function are: Irreversibility, Sensibility,
Full confusion and Diffusion. Given that X and Y are n
bit numbers, definition of Con(X,Y) given in Table 2. The
description of input to function is as follows.
X = xnx(n−1)x(n−2).x1

Y = yny(n−1)y(n−2)y1
Threshold (maximum size of grouped bits) = T

SLAP working can be divided in two parts.

I. Tag Identification:Reader enquiries the index
pseudonym from tag by sending “Hello′′ message.
Tag replies the reader with IDSn . If this value is not
present at the server, reader resends “Hello′′ message.
This time tag sends IDSo . If record is found against

Figure 2. Working of RCIA Protocol

TABLE 2. STEPS FOR CONVERSION FUNCTION Con(X,Y)

Step 1: Grouping

If wt(X) ≤ n

Split the input such that
X2 = xnx(n−1)x(n−2).x(wt(X)+1)

X1 = x(wt(X))x(wt(X)−1)x(wt(X)−2) · · ·x1

Continue splitting the sub part
till size of all subgroups is less than T.

Group Y according to same rule

Step 2: Rearrange

Regroup X according to segmentation in Y.
Rearrange grouping in Y depending on

segmentation pattern in X.
Cyclic left rotate each group by its weight.

Final outputs will be X′′, Y ′′

Step 3: Composition

Con(X,Y) = X′′ ⊕ Y ′′

IDSo, protocol move towards mutual authentication
phase otherwise it gets terminated.

II. Mutual Authentication and IDS, K1, K2 Updat-
ing:Reader generates a random number n. By using
K1 and K2 associated with index pseudonym, reader
calculates A and B.

A = Con(K1,K2)⊕ n

B = Con(Rot(K1, n),K1 ⊕K2)⊕Rot(Con(K2,K2 ⊕ n),K1)

B is then divided into two equal segments (Bl, Br). If
hamming weight of B is odd, data transmitted to tag
is A‖Bl otherwise A‖Br is transmitted.
Random number is extracted from received message
A. Tag verifies the authenticity of reader by calculat-
ing local value of Bl or Br and comparing it with
received value. After reader authentication, tag updates
its parameters and calculates C.

28

Figure 3. Working of SLAP

IDSo = IDSn,K1o = K1n,K2o = K2n

K1n = Con(K1, n)⊕K2

K2n = Con(K2, B)⊕K1

IDSn = Con(IDS, n⊕ (B′′
lorr

||C ′′
lorr

))

C = Con(Con(B,K1n), Con(K1n,K2n ⊕ n))⊕ ID

Reader receives a segment of C,Cl or Cr based on
hamming weight of C. Tag is validated by calculat-
ing and comparing local value of Cl or Cr. At the
end of protocol, reader updates the values of index
pseudonyms and keys by executing function used by
tag side. Steps of SLAP is elaborated in Figure 3.

3. Desynchronization Attack

In Desynchronization attack, the adversary performs
eavesdropping and replay attack. The main motive of this
security attack is to remove index pseudonyms of tag from
the reader database. In this way, protocol fails in tag identifi-
cation mode. Following are the details of desynchronization
attacks on above mentioned protocols.

3.1. Desynchronization Attack on SASI:

Following are the two methods that have been pro-
posed so far to perform desynchronization attack on SASI
protocol[8].

3.1.1. The First Attack:. Let us assume that tag and reader
are completely in sync. The parameters being saved on both

TABLE 3. DESYNCHRONIZATION ATTACK 1

Reader Tag

InitialState IDS IDS1 IDSn IDS1 IDSo IDS0

Step1 IDS IDS1 IDSn IDS2 IDSo IDS1

Step2 IDS IDS3 IDSn IDS3 IDSo IDS1

Step3 IDS IDS3 IDSn IDS2 IDSo IDS1

TABLE 4. DESYNCHRONIZATION ATTACK 2

Reader Tag

InitialState K2 K1
2 K2n K1

2 K2o K0
2

Step1 K2 K2
2 K2n K2

2 K2o K1
2

Step2 K2 K2
2 K2n K2∗

2 K2o K1
2

sides are given in Table 3.
Step 1:During an authentication cycle, adversary sniffs the
values of variables A,B,C. It also blocks message D from
tag to reader. Without D message reader cannot verify tag
and hence will not update parameters.
Step 2: RFID system run the protocol again without the
interference of third party.
Step 3: In this step, adversary pretends to be a reader and
sends“Hello′′ message to tag. It discards IDS3 value from
tag and asks for IDSo. As a result IDS1 is received. Then
the adversary replays the A‖B‖C messages. Since these
messages were generated by valid reader tag authenticates
and updates its variables.

As it is evident in the above table 3, different values
of variables are stored in reader and tag. After this attack,
reader will never be able to identify the tag.

3.1.2. The Second Attack:. In this scheme, K2 at tag
side is changed in such a way that protocol running with
a legitimate reader always terminates at tag authentication
step. Hence tag and reader lose their communication link.
Consider an RFID system in which tag and reader are
synchronized as given in table 4.
Step 1:Reader and tag completes a successful session. But
the communication is recorded and saved as (A1 = A,B1 =
B,C1 = C).
Step 2:In this step tag communicates with the adversary on
the basis of IDS1. Message A,B and C are slightly modi-
fied version of previously recorded messages (A∗1, B

∗

1 , C
∗

1).
A∗1 = A1 with kth bit flipped, B∗1 = B1 and C∗1 = C1

with msb flipped. Change in A1 will cause kth bit of n1 to
change. This will flip kth bit of K2 ⊕ n∗1. If the weight of
K1 moves this flipped bit at msb of C then adversary gets
authenticated and modifies K2 of tag as K∗

2 .

The results in Table 4 show the desynchronization of tag
and reader.

3.2. Desynchronization attack on RCIA and SLAP:

In September 2016, Masoumeh and Nasour proposed
a generalized desynchronized attack on RCIA and SLAP
UMAPs [9]. The proposed attack model requires only five

29

authentication sessions to make both the reader and the tag
desynchronize. The generalized description of the desyn-
chronization attack is presented as follows:

In RCIA and SLAP, both the reader(R)
and the tag (T) store two entries of pseudonyms

(IDS(i+1)&IDSi) and Keys (K(i+1)&Ki) to overcome
the possible desynchronization attacks. So, in first ses-
sion, R initiates the protocol session with the targeted
T and receives messages, A(i+1), B(i+1), C(i+1). The
tag, T then responds with message D(i+1) and also
updates its variables (IDS(i+2),K(i+2)). After authen-

tication of message D(i+1) , the reader also updates
its variables (IDS(i+2),K(i+2)). Now, both the reader
and the tag have updated and previous variable values
(IDS(i+1), IDS(i+2),K(i+1)&K(i+2)) in their databases.
The adversary (A) eavesdrops the first authentication session

and stores the value of pseudonym and messages (IDS(i+1)

and A(i+1), B(i+1), C(i+1)&D(i+1)).
In the second authentication session,R receives the

IDS(i+2) and sends A(i+2), B(i+2), C(i+2) to T . The ad-
versary (A) eavesdrops this conversation and prevents these
messages from reaching at T side. Since, the authentication
session remains incomplete, so both the R and T will not up-
date their variables and remain stay with previous variables
(IDS(i+1), IDS(i+2),K(i+1)&K(i+2)). For the third ses-
sion, R initiates the authentication session and T responds
with its IDS(i+2). The adversary (A) interrupts the conver-

sation, blocks the IDS(i+2) from reaching at readers side
and sends the random value as IDS∗ to the R. R will not
find the find the matched entry of this random pseudonym
and hence sends another“Hello′′ message towards T . This
time, T responds with its old value IDS(i+1) for authenti-
cation. Now, R sends A(i+3), B(i+3), C(i+3) messages to T
and receives D(i+3). After successful authentication both R
and T store (IDS(i+1), IDS(i+3),K(i+1)&K(i+3))in their
database and still remain synchronized .

In fourth session, A impersonate as a valid R
and interacts with T . On receiving of “Hello′′ mes-
sage, T responds with IDS(i+3). However, A sends an-
other “Hello′′ message to T and at this time T re-
sponds with IDS(i+1). The adversary, A then sends the
pre-captured messages A(i+1), B(i+1), C(i+1) to T ;which
are acceptable for T (Since these messages were cap-
tured from valid authentication session). T authenticates
the messages and updates its pseudonyms and keys as
(IDS(i+1), IDS(i+2),K(i+1)&K(i+2)) while at this point

the reader has (IDS(i+1), IDS(i+3),K(i+1)&K(i+3)) in
its database. Finally, in the last authentication session, A
once again pretends to be a valid R and sends a “Hello′′

message towards T . Upon receiving of readers (A) query,T
responds with IDS(i+2) and A replays the pre-captured
messages A(i+2), B(i+2), C(i+2)(second authentication ses-
sion). Since, these messages are extracted from a genuine
authentication session, therefore acceptable for T and after
successful authentication, T updates its pseudonym and keys
as (IDS(i+2), IDS(i+4),K(i+2)&K(i+4)) .

Now, next time when R wants to interact with the
affected T , then it will not recognize him and will always

abort its authentication session (permanently desynchro-
nized)..

4. Novel Memory Storage Mechanism for

UMAPs:

Since 2007, various memory storage mechanisms have
been presented to avoid possible desynchronization attacks
(scenarios). In SASI and GOASSMER, the tag stores both
the current and new values of the pseudonyms and the keys.
However, as discussed in section 3, a very simple confusion
mechanism can make both the reader and the tag perma-
nently desynchronized. The RAPP protocol devised another
strategy to combat against desynchronization models and
instead of storing two entries of pseudonyms and keys at tag
side, RAPP stores these two entries at reader side. Although,
this memory storage mechanism reduces the memory re-
quirements at tag side but found to be vulnerable against
many desynchronization attacks [8] [10]. Later, Umar Mu-
jahid et al.[6] suggested that the storage of two entries (old
and new) at both side (tag and reader) is the only way
out to get rid from all possible desynchronization attacks.
However, as discussed in previous section, Masoumeh and
Nasour [9] showed that this two side storage does not also
perform well in an active adversarial model. The authors
suggested that if we use Pseudo Random Number Generator
at both sides only then one can only avoid the desynchro-
nization problems. However, integration of PRNGs at tag
side is not practically feasible, since we have resources
constraint at tag side (4K GE). In this section, we have
proposed a new memory storage mechanism for UMAPs
without adding any payload at tags side. The proposed
memory storage mechanism is generic, so can be applied
to all upcoming UMAPs as well. The detailed description
of the proposed model is as follows:

Like RCIA and SLAP, in our proposed memory
storage mechanism, the tag (T) stores two entries of the
pseudonyms and keys (IDSold, IDSnew,Kold,Knew),
this reduces the communication cost of the protocol.
While the reader (R) has a dynamic memory allocation
mechanism and it stores all the pseudonyms and keys
(·, IDS(old−1), IDSold, IDSnew, IDS(new+1)·,Kold,Knew,
K(new+1), ·), related to the particular tag. A Real Time
Clock (RTC) has also been assimilated at reader side
(one for each tag). So, whenever (even in the presence
of adversary) a legitimate reader interacts with the valid
tag, the response of the tag should be present in readers
database. To avoid the buffer overflow at reader side, the
RTC has been assimilated with reader for each tag, which
monitors and allows an overwriting on the oldest IDS values
(starting from MSB). The memory mapping architecture
(Reader side) has been presented in the following Figure 4.

By using the above mentioned memory architecture,
none of the adversaries can launch desynchronization attack
against reader and the tag. For security of the proposed
model, let‘s consider the Masoumeh and Nasour desynchro-
nization attack model.

30

Figure 4. Novel Readers Memory Architecture

In the fifth authentication session, the adver-
sary forces both the legitimate reader (R) and the tag

(T) to store (IDS(i+1), IDS(i+3),K(i+1)&K(i+3)) and

(IDS(i+2), IDS(i+4),K(i+2)&K(i+4)) respectively. So, by
applying our, if the RTC threshold value is set to 1000
then it means, adversary requires atleast 5000 authentication
sessions to make them desynchronize which is practically
impossible as counter (present at tag side) resets after ex-
tensive wrong queries.

5. Conclusion

This paper presents the comprehensive survey of
the ultralightweight cryptography and specifically Ultra-
lightweight Mutual Authentication Protocols (UMAPs). We
have discussed the detailed working of two new UMAPs:
RCIA and SLAP. Then a new desynchronization attack
model has been discussed which highlights the loopholes of
both UMAPs. To overcome the highlighted vulnerabilities,
a novel security frame work (to avoid desynchronization
attacks) has also been proposed. The proposed security
framework provides the optimal memory architecture at
reader side without adding any payload at the tag‘s side. The
security framework is generic in nature so can be applied to
all existing and upcoming UMAPs as well to avoid possible
desynchronization attacks.

References

[1] M. David and N. R. Prasad, “Providing strong security and high
privacy in low-cost rfid networks,” in International Conference on

Security and Privacy in Mobile Information and Communication

Systems, pp. 172–179, Springer, 2009.

[2] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estévez-Tapiador, and
A. Ribagorda, “Lmap: A real lightweight mutual authentication proto-
col for low-cost rfid tags,” in Workshop on RFID security, pp. 12–14,
2006.

[3] H.-Y. Chien, “Sasi: A new ultralightweight rfid authentication pro-
tocol providing strong authentication and strong integrity,” IEEE

Transactions on Dependable and Secure Computing, vol. 4, no. 4,
pp. 337–340, 2007.

[4] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and
A. Ribagorda, “M2ap: A minimalist mutual-authentication protocol
for low-cost rfid tags,” in International Conference on Ubiquitous

Intelligence and Computing, pp. 912–923, Springer, 2006.

[5] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and
A. Ribagorda, “Emap: An efficient mutual-authentication protocol for
low-cost rfid tags,” in OTM Confederated International Conferences”

On the Move to Meaningful Internet Systems”, pp. 352–361, Springer,
2006.

[6] U. Mujahid, M. Najam-ul Islam, and M. A. Shami, “Rcia: a new
ultralightweight rfid authentication protocol using recursive hash,”
International Journal of Distributed Sensor Networks, vol. 2015,
2015.

[7] J. S. Hanguang Luo, Guangjun Wen and Z. Huang, “Slap: Succinct
and lightweight authentication protocol for llow-cost rfid system,” in
The Journal of Mobile Communication, Computation and Informa-

tions, Springer, 2016.

[8] H.-M. Sun, W.-C. Ting, and K.-H. Wang, “On the security of chien’s
ultralightweight rfid authentication protocol,” IEEE Transactions on

Dependable and Secure Computing, vol. 8, no. 2, p. 315, 2011.

[9] M. Safkhani and N. Bagheri, “Generalized desynchronization attack
on umap: application to rcia, kmap slap and sasi++ protocols,”
Cryptology ePrint Archive, p. 905, 2016.

[10] Z. Ahmadian, M. Salmasizadeh, and M. R. Aref, “Desynchronization
attack on rapp ultralightweight authentication protocol,” Information

processing letters, vol. 113, no. 7, pp. 205–209, 2013.

31

