

FINAL YEAR PROJECT REPORT

CNC PCB ENGRAVING AND DRILLING MACHINE

In fulfillment of the requirement For degree of BEE (Electronics)

By

ADIL NAWAZ KHURAM IFTIKHAR HAMZA MAHMOOD

35512 BEE(ELECTRONICS) 35407 BEE(ELECTRONICS) 35402 BEE (ELECTRONICS)

SUPERVISED

BY

ENGR. MUHAMMAD KHALID

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2013-2017

ACKNOWLEDGEMENTS

s.

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, **Engr. Muhammad Khalid** for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given us encouragement.

. .

CNC PCB ENGRAVING AND DRILLING MACHINE

ABSTRACT

Due to the rapid growth of technology the usage & utilization of CNC machine in industries are increased. The fabrication of low cost CNC machine is used to reduce cost and complexity of machine. This paper deals with the engraving of automatic CNC machine for PCB engraving and drilling. The Idea behind our project is to engrave and drill PCB based on low cost CNC system the lower cost is achieved by incorporating features of PC with CNC controller card. We have use an G code for whole system operation G code is nothing but a language in which people tell computerized machine tools 'How to make something'. The How is defined by instructions on where to move & how fast to move. Key Words: CNC, CNC card, motor drivers, stepper motors, power supply, spindle.

The drawings shall be generated on standard platforms with fixed limits. The application software analyses the drawing, which then extracts the coordinates and sends in the form of specific command through the serial/USB port.

The system then controls the stepper motors to achieve the required movement and the desired position. Gantry type arrangement is used to assist motors for movement in X, Y and Z direction (3-Dimensional).

The backbone of the system is a cleverly designed but equally simple mechanical assembly, resulting in great accuracy.

The project includes significant study of design principles and technical details of the CNC machine aimed for best performance.

TABLE OF CONTENTS

.

.

• `

DECLARATION	Error! Bookmark not defined.
APPROVAL FOR SUBMISSION	111
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS / ABBREVIATIONS	xiv

CHAPTER

1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statements	3
	1.3	Aims and Objectives	4
		1.3.1 Aims	4
		1.3.2 Objectives	5
	1.4	Scope of Project	- 5
2	LIT	6	
_	2.1	The CNC Process	6
	2.2	Motor Driver	6
	2.3	CNC Interface Card	7
	2.4	Power Supplies	8
	2.5	Axis and Motion Nomenclature	9
	2.5	2.5.1 Cartesian Coordinates Systems	9

3	DESIGN AND METHODOLOGY	10
	CNC Linear Slide and Its Components	10

Participal Part & A

viii

	3.1.1	Features of CNC Linear Slide	10	
	3.1.2	Flexible Coupling		
		3.1.2.1 Characteristics	11	
	3.1.3	Linear Slide Bearing	12	
		3.1.3.1 Material Used for Ball Be	13	
	3.1.4	Lead Screw Engineering		
3.2	Powe	13		
	3.2.1	Terminology of Lead Screw Systems	14	
	3.2.2	Lead Screws	15	
		3.2.2.1 Advantages	17	
		3.2.2.2 Disadvantages	17 17	
	3.2.3		17	
	3.2.4	3.2.4 Force Calculations on Lead Screw		
		3.2.4.1 Torque Calculations	18 20	
	3.2.5		ns 21	
		3.2.5.1 Maximum Speed	22	
		3.2.5.2 Rotational Equation of W		
		3.2.5.3 Inertia of Lead Screw	23	
3.3	Comp	arison between Stepper and Servo Motors		
		Working Principle of Stepper Motor	25	
		Types of Stepper Motor	25	
		3.3.2.1 Permanent Magnet Stepp		
		3.3.2.2 Variable Reluctance stepp		
		3.3.2.3 Hybrid Stepper	28	
3.4	Steppi	ing Modes	30	
	3.4.1	Wave drive	30	
	3.4.2	Full Drive	30	
	3.4.3	Half Drive	31	
	IMPL	MENTATION	32	
		Drive Technology for Motion Control	32	
		4.1.1 Driver	33	
	4.2	Motors Connection	34	
		4.2.1 Connections with Motors	34	
	4.3	Precaution for Installation	36	
	4.4	Eagle	36	
		4.4.1 Features	36	
		4.4.2 Easy to Use Schematic	36	
		4.4.3 Powerful PCB Layout	37	
	4.5	Interfacing	37	
	4.6	Introduction of Parallel Port	37	
		4.6.1 Parallel Port Modes	38	
		4.6.2 Hardware	38	
		4.6.3 Parallel Port Registers	39	

4

ÌΧ

	4.6.4	Parallel Port Interfacing of Machine Using Machine	2 20
4.7	In	troduction to MACH3	40
		Main Display	40
		4.7.1.1 Using Buttons and Shortcuts	40
	4.7.2	Data Entry to DRO	41
	4.7.3	Tool Path Display	41
	4.7.4	Other Screen Features	42
		Mach3 Characteristics	42
			72
		D DISCUSSIONS	45
5.1		Loop Positioning Systems	45
		Open Loop Systems	45
	5.1.2	Calculations of an Open Loop System	46
		5.1.2.1 Calculations	46
5.2	5.2 Accuracy, Repeatability, and Control Resolution of		
	CNC N	<i>l</i> achine	50
	5.2.1	Control Resolution	50
	5.2.2	Accuracy	51
CON	CLUSIC	ON AND RECOMMENDATIONS	53
6.1	Machir	ne Specification and Part Labelling	53
	6.1.1	Frame	53
	6.1.2	Linear Motion Equipment	54
		Motors	54
	6.1.4	Control Box	55
	6.1.5	Computer System	55

• *

REFERENCES

. .

5

6

lvi