ROBOTIC ARM ON 5 DEGREE OF FREEDOM FOR SPRAY PAINTING OF MECHANICAL PARTS

MUHAMMAD WASEEM	35447	B.E (Electronics)
MARYAM MANZOOR	35412	B.E (Telecom)
BILAL HAIDER	35392	B.E (Electronics)

A project report submitted in partial fulfilment of the requirements for the award of Bachelor's Degree of Electrical Engineering

> Department of Electrical Engineering Bahria University, Karachi Campus

> > **YEAR 2017**

ACKNOWLEDGEMENTS

We want to thank everybody who had added to the fruitful pass finishing of this endeavor. We want to express our thankfulness to our research supervisor, Mr Asst. **Prof Umair Arif** for his invaluable exhortation, course and his colossal persistence during the growth of the project.

Moreover, we similarly want to offer our thanks to our cherish guardians, family, friends and associate who had helped and given us comfort.

Design and development of 5 DOF prototype Robotic Arm for painting mechanical parts

ABSTRACT

Main objective of developing this project is to design the robotic arm to work on five degree of freedoms to spray paint the mechanical parts used in the industry and also to draw dedicated shapes on the drawing page with external human interface. This project is working on the principle of control system design of 5 motors and to make them work simultaneously by using the technology of training algorithms to train the robotic arm to follow the desired trajectory planning. Different technical model and Control algorithms are used to enhance the performance of the robotic arm in this Project. Its capability of reputation of tasks make it useful for the industry as there we are having number of similar products to proceed in stream.

The system needs first run by getting trajectory from the PC or from hardware joystick interface and will record the motion of trajectory and then process it with using algorithms to refine the motion repeated and pump with high pressure is used to create the paint to the nozzle and make robotic arm spray in desired area. The working of robotic arm is limited to the working envelope because of its structure design. So, robotic arm can cover the 170-degree angle for painting any object. And it can be a building block for the innovation in majority of areas in our daily life that is discussed in the future work.

The design aims to give fine controlin performing industrial tasks, while keeping up the straightforwardness of outline, scaling down, and daintiness are additionally accomplished.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS / ABBREVIATIONS	xiv
LIST OF APPENDICES	xv

CHAPTER

1	INTR	INTRODUCTION		
	1.1	Background	1	
	1.2	Problem Statements	1	
	1.3	Aims and Objectives	2	
		1.3.1 Key Benefits and Beneficiaries	2	
		1.3.2 Objectives	3	
1	1.4	Scope of the project		
2	LITE	RATURE REVIEW	6	
~	2.1			
	2.2	State Of the Art	8	
	2.3	Motivation and Need	12	
3	DESI	13		
5	3.1	Design	13	
	5.1	3.1.1 3D Robotic Arm	13	

viii

		3.1.2	Components	14
		3.1.3	Controlling Mechanism	19
3.2		Metho	Methodology	
		3.2.1	GUI Method	22
		3.2.2	Joystick Method	25
		3.2.3	Trajectory Planning	26
	3.2	Risk A	Analysis	30
4	IMPL	MENTA	ATION	31
	4.1	Mecha	inical Process	31
		4.1.1	GUI based Robot	31
		4.1.2	Joystick Robot	35
4.2 Software Process		are Process	36	
		4.2.1	GUI based Robot	36
		4.2.2	Joystick Robot	37
	4.2	Exper	imental Verification	38
5	RESU	JLTS AN	ND DISCUSSIONS	41
	5.1	Discu	ssion	41
	5.2	Expected Outcomes		41
	5.3	Exper	imental Results	42
6	CON	CLUSIC	ON AND RECOMMENDATIONS	43
	6.1	Concl		43
	6.2	Future	e Work	43
REFI	ERENCE	ES		45
APPI	ENDICE	S		47

ix