

FINAL YEAR PROJECT REPORT

WEIGHT LIFTING HEXA-COPTE

In fulfillment of the requirement For degree of BEE (Electronics)

By

SHEHERYAR ALI USMAN QAMAR SYED ADEEL SHAH 35466 BEE(ELECTRONICS)35482 BEE(ELECTRONICS)35468 BEE (ELECTRONICS)

SUPERVISED

BY

MS.HINA SHAKIR

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2013-2017

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Madam Hina Shakir for her invaluable advice, guidance and her enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

WEIGHT LIFTING HEX-COPTER

ABSTRACT

The military use of unmanned aerial vehicles (UAVs) has grown due to its ability to operate in hazardous locations while retaining their human operators at a safe distance. Larger UAVs also provide a cost-effective, reliable platform for long-term, recognition, as well as weapons. They have grown up to become an indispensable tool for the military. The question of our project was whether unmanned aerial vehicles also had utility in military as well as commercial and industrial applications. We postulate that unmanned aerial vehicles can serve more tactical operations such as looking for a town or a building for positions of enemy. UAVs, on the order of a few feet to a meter in size, should be able to handle the military tactical operations, as well as the emerging commercial and industrial applications and our project seeks to validate this hypothesis.

The objective of this project is to develop an environment friendly device that can deliver objects and parcels from one place to another. This report explores different techniques used for delivering the parcels from one place to other. Different techniques involved are manual controlling using Radio Controller and by predefined flight path using Global Positioning System (GPS). Our device uses the GPS module that sends data on Mission Planer software of the flight operation. This project will help to deliver an Emergence Aid to places where it is difficult for people to reach with in required time. It can deliver Emergency Aids/help during Military operations in battle field. The device has a smart flight controller that uses its sensors: accelerometer, barometer and gyroscope to maintain the flight and to keep the system in stable position during flight. The powerful brushless DC motors are capable of carrying a parcel of weight about 5 to 6 kg, depending on wind pressure in the atmosphere.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xii
LIST OF SYMBOLS / ABBREVIATIONS	xiii

CHAPTER

1	INTR	ODUCTION	14
	1.1	Background	14
	1.2	Problem Statements	14
	1.3	Aims and Objectives	17
	1.4	Scope of Project	17
2	LITE	LITERATURE REVIEW	
	2.1	Multi-rotor	18
	2.2	Review of Physics	18
	2.3	Review of body	20
		2.3.1 Frame types	20
		2.3.2 Hexa-copter configuration	21
	2.4	Review of material	22
	2.4.1	Framematerials	22

		ix
DESI	GN AND METHODOLOGY	25
3.1	Block Diagram	25
3.2	Hexa -copter Frame (Tarot 690)	25
	3.2.1 Description	27
	3.2.2 Technical Specification	27
3.3	Motors	27
	3.3.1 Description	28
	3.3.2 Technical Specifications	27
3.4	Flight Controller	29
	3.4.1 Characteristics	30
	3.4.2 Features	30
	3.4.3 Data sheet	31
3.5	3Dr Power Module	31
3.6	6S LiPo Battery	32
	3.6.1 Features	32
	3.6.2 LiPo Battery Charger	33
3.7	Electronic Speed Controller (ESC)	33
	3.7.1 Working of ESC	34
3.8	Propellers	34
3.9	RC Radio Transmitter	35
	3.9.1 Features	36
	3.9.2 Specifications	36
3.10	Power Distribution Board	36
3.11	Telemetry Radio	37
	3.11.1 Features	38

3

			~
4	IMP	LMENTATION	38
	4.1	Mission Planner	38
		4.1.1 Features	40
	4.2	Installation of Firmware in APM	39
	4.3	RF Radio Transmitter Calibrations	40
	4.4	Implementation Of GPS	41
		4.4.1 GPS Drone Navigation	41
	4.5	Compass Calibrations	41
	4.6	Stability Of Hexa Copter	43
5	RESULTS AND DISCUSSIONS		43
	5.1	Stabilizing Testing and APM Tuning	44
		5.1.1 In Flight APM Tuning	45
		5.1.2 Initial Test Flight	46
	5.2	Problems	46
	5.3	Discussion	46
		5.3.1 Difficulties	46
6	CONCLUSION AND RECOMMENDATIONS		
	6.	CONCLUSION AND FUTURE WORK	48
		6.1 FUTURE WORK	48
		6.2 Applications of the Project	49

•

REFERENCES

.

50