

FINAL YEAR PROJECT REPORT

EXO-SKELETON

In fulfillment of the requirement

For degree of

BEE (Electronics)

BY

MUHAMMAD HASSAN RAJA	35501
SOBIA ALI KHAN	35467
SYED BAQIR IMAM ZAIDI	35492
LOVE KUMAR LOHANA	35494

SUPERVISED BY

ENGINEER BURHAN AHMED

BAHRIA UNIVERSITY (KARACHI CAMPUS)

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Mr. Burhan Ahmed for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parent who had helped and given us encouragement and for funding our project and always believing in our idea and making all efforts so that we can complete this project.

EXO-SKELETON

ABSTRACT

Metabolic educations have shown that there is a metabolic cost related with carrying a load. Further studies have shown that by applying forward propulsive forces a person can walk with a summary metabolic rate. Previous work on exoskeleton design has not considered the passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this project, an under-actuated exoskeleton is presented that runs parallel to the human leg.

The exoskeleton module design is created on the kinematics and kinetics of human walking. The object of this project is to help disable or aged person who faces difficulty in moving and walking. It is basically a suit which performs as an outer Skelton for a human being who is disabled or has difficulty to walk balance, sit, stand from chair, stairs, etc. like the most aged person. These components will be programmed and works on Arduino. Movements are controlled though Arduino.

An exoskeleton suit has an enormous potential which can be used to support people with temporary or permanent disabilities.

The exoskeleton can uplift 85kg weight of a person.

The lives of paralyzed and physically disabled people can be changing through exoskeleton by giving them independence of directorial their own movement.

TABLE OF CONTENTS

DECLARATION
APPROVAL FOR SUBMISSION
ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES AND GRAPHS
LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

1	INTRODUCTION	
1.1	Background	20
1.2	Problem Statements	21

22

1.4	Scope of Project	23
CHAP	PTER 2	
2	LITERATURE REVIEW	
2.1	Concept of exoskeleton	24
2.2	Actuation	25
2.3	Linear mechanical actuator	26
2.4	Converter	27
2.4.1	Converter Circuit design	31
2.4.2	Isolated relays	31
2.5	Bearings	34
2.6	Bio mechanical analysis	35
2.6.1	Human walk	35
2.6.2	Muscle activity in step	38
2.6.3	Hip kinematics and kinetics	39
2.6.4	Knee kinematics and kinetics	40
2.6.5	Ankle kinematics and kinetics	42

Aims and Objectives

1.3

3	DESIGN AND METHODOLOGY	
3.1	Designing	43
3.1.1	Initializing the project	43
3.1.2	The main components	44
3.1.3	Exoskeleton structure	45
3.1.4	Flow Diagram	46
3.1.5	Degree of freedom	47
3.2	Skeleton	47
3.3	Exoskeleton interference to the human	49
3.3.1	Hip movement	49
3.3.2	Knee movement	49
3.3.3	Ankle movement	50
3.3.4	Final Assembly	50
3.4	Auto CAD designing	53
3.5	Actuation Process	56

4	IMPLMENTATION	
4.1	Power control and modulation	57
4.2	Arduino	59
4.2.1	ATmega328	60
4.2.2	Initial window	61
4.2.3	Arduino circuit diagram	62
4.2.4	Arduino programming	63
4.3	Sensing	65
4.3.1	Angle sensing	67
4.3.2	Hip spin sizes	67
4.3.3	Ground exoskeleton interaction sensing	68
4.4	Control strategies	69
4.4.1	Knee controller	70
4.4.2	Hip controller	71
4.5	GUI	73

5	RESULTS AND DISCUSSIONS	
5.1	Kinematics and kinetics data	74
5.2	Hip and Knee paths	75
5.3	Features of the exoskeleton movement	75
5.4	Metabolic measurement	76
5.5	Weight of exoskeleton	77
5.6	Other features	77
5.7	Cost analysis	78
СНА	PTER 6	
6	CONCLUSION AND RECOMMENDATIONS	
6.1	Conclusion about exoskeleton	79
6.2	Future work	80
REF	ERENCES	81
вос	OKS	83
APP	ENDICES	84