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Highlights

• Flow of thermal and solutal stratification on Jeffrey nanofluid is studied.

• Effects of mixed convection and thermal radiation are also considered.

• Temperature field is decreasing function of thermal and solutal stratification.

• Analytical solution is obtained using Homotopy analysis method
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Abstract: A mathematical model is established to discuss the flow of magneto Jeffrey

nanofluid with heat generation/absorption and thermal radiation past an inclined stretched

cylinder. Effects of thermal and concentration stratification are also taken into account.

Analytical solution of the problem is obtained using Homotopy analysis method. Graphical

illustrations depicting effects of prominent arising parameters on involved profiles with req-

uisite discussion are also presented. Further, numerical data representing Skin friction, heat

and mass transfer rates are also given in the form of table. A comparison in limiting case to

previous study is also added to verify our results. It is found that temperature and concen-

tration distributions are decreasing functions of thermal and solutal stratification parameters

respectively.

Keywords: Double stratification; Jeffrey Fluid model; Thermal radiation; Nanofluid;

MHD.

1 Introduction

Stratification play a pivotal role in heat and mass transfer analyses. This phenomenon

arises because of fluids with varied densities, difference in concentrations or temperatures.

In convective flows, it becomes imperative to examine the effect of stratification whenever

heat and mass transfer occur simultaneously. That is why the problem of mixed convection

in the presence of double stratification is quite important. Abbasi et al. [1] analyzed flow of

Maxwell nanofluid with effects of double stratification and mixed convection. Srinivasacharya

and Surender [2] found numerical solution of viscous nanofluid flow with impact of heat

and mass stratification and mixed convection past a porous medium using Finite element

method. Hayat et al. [3] discussed analytical solution of flow of thixotropic nanofluid past a

linearly stretched sheet under the influence of magneto hydrodynamic, double stratification

and mixed convection. Hayat et al. [4] computed series solution of flow of Oldroyd-B fluid
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past a linearly stretched surface with effects of thermal radiation, chemical reaction, mixed

convection and double stratification. Another exploration by Hayat et al. [5] investigated

the effects of thermal and mass stratification in the presence of magnetohydrodynamic and

mixed convection in the viscous nanofluid flow past an inclined stretching sheet. Some more

recent studies highlighting stratification’s effects may be found at [6− 8].

Non-Newtonian materials are that which do not conform Newtonian law of viscosity

[9 − 12]. Scientists and researchers are still motivated to find new fronts because of their

wide range engineering and industrial applications with classical features like yield stress,

shear thinning or thickenings and die swelling. An ordinary subclass of non-Newtonian flu-

ids is Jeffrey fluid in which convective derivative is replaced by time derivative and is one

of the viscoelastic non-Newtonian fluid model that demonstrate the characteristics of both

relaxation and retardation time. A reasonable number of explorations may be found in the

literature emphasizing flows of Jeffrey fluid. Amongst these Hayat et al. [13] found analytical

solution of stagnation point flow of Jeffrey fluid with effects of Cattaneo-Christov flux and

thermal stratification past a stretching cylinder. Ellahi et al. [14] found numerical solution of

peristaltic Jeffrey fluid flow with effects of MHD, Hall and Ion slip past a non-uniform rectan-

gular duct. Rahman et al. [15] analyzed numerical solution of Jeffrey nanofluid past a porous

artery wall with effects of convection. Ahmad et al. [16] discussed flow of magneto hydro-

dynamic Jeffrey fluid flow in attendance of mixed convection past an exponential stretched

surface. Imtiaz et al. [17] investigated MHD flow of Jeffrey fluid with effects of homogeneous-

heterogeneous reactions in the presence of convective boundary conditions. Maqbool et al.

[18] studied cilia induced MHD Jeffrey fluid flow past a tube at an inclined angle. Some more

recent investigations emphasizing Jeffrey fluid flow are appended at [19− 21].

Nanofluid is considered to be a more vibrant branch of nanotechnology. Abundant at-

tempts may be found in the literature by scientists and researchers to highlight new features

of nanofluids. Pioneering effort by Das et al. [22] introduced nanofluids, that are amalgama-

tion of base fluid and nano sized metallic particles. Heat transfer rate is case of nanofluids is

much higher as compared to the conventional base fluid. The flow of nanofluids with effects

of magnetohydrodynamic (MHD) is an important area of study in fluid mechanics. Numer-

ous applications featuring magneto nanofluids like elimination of tumors with hyperthermia,

elimination of tumors and sterilized devices, asthma treatment, drug release and synergistic

effects may be quoted in this regard. Recent investigations in this regard may be seen in the

literature at [23− 26] and many therein.

The main objective this exploration is to study the flow of magnetohydrodynamic (MHD)

Jeffrey nanofluid in the presence of thermal and concentration stratification past an inclined

stretching cylinder. Effects of heat generation/absorption with mixed convection are also

considered. Existing literature on this subject is mostly dealt with horizontal geometry. No

study so far has been carried out featuring Jeffrey nanofluid flow past an inclined stretching

cylinder. Therefore, present exploration targets to bridge the gap and it appears to be the
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first attempt in this regard. Series solutions are obtained using renowned Homotopy analysis

method (HAM) [27− 30]. The effects of incipient parameters on involving distributions are

given in the form of illustrations with requisite discussion. Values of Skin friction, local

Nusselt and Sherwood numbers are calculated numerically and deliberated accordingly.

2 Mathematical Modeling

We have considered an incompressible steady flow of MHD Jeffrey nanofluid with effects of

double stratification past an inclined stretched cylinder. Analysis is performed in attendance

of thermal radiation, heat generation/absorption and mixed convection. Temperature and

concentration far away for the surface are much lesser as compared to cylinder’s surface.

Keeping origin fixed, two equal and opposite forces on the surface of the cylinder are re-

sponsible for stretching velocity. The Cauchy stress tensor for the Jeffrey fluid model can be

written as [31]:

τ = −pI + S, (1)

where S is extre stress tensor and is defined as

S =
µ

1 + λ1
(r· + λ2r

··) , (2)

τ is Cauchy stress tensor, µ the dynamic viscosity, λ1 and λ2 are material derivatives of

Jeffrey fluid and R1 is Rivilin-Ericksen tensor, described by,

r· = (∇V ) + (∇V )T , r·· =
d

dt
(r·). (3)

Boundary layer approximations result in the following laws of conservations:

∂ (ru)

∂x
+
∂ (rv)

∂r
= 0, (4)

u
∂u

∂x
+ v

∂u

∂r
=

ν

1 + λ1

(
∂2u

∂r2
+

1

r

∂u

∂r

)
+

νλ2
1 + λ1

(
v ∂

3u
∂r3

+ ∂v
∂r

∂2u
∂r2

+ u ∂3u
∂x∂r2

+
∂u
∂r

∂2u
∂x∂r

+ 1
r

(
v ∂

2u
∂r2

+ u ∂2u
∂x∂r

)
)

+

(gβT (T − T∞) + gβC (C − C∞)) cosα− σB2
ou

ρ
, (5)

u
∂T

∂x
+ v

∂T

∂r
=

k

ρcp

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+
Q0

ρcp
(T − T∞) +

τ

[
DB

∂T

∂r

∂C

∂r
+
DT

T∞

(
∂T

∂r

)2
]
− 1

rρcp

∂ (rqr)

∂r
, (6)

u
∂C

∂x
+ v

∂C

∂r
= DB

1

r

∂

∂r

(
r
∂C

∂r

)
+
DT

T∞

(
1

r

∂

∂r

(
r
∂T

∂r

))
, (7)
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with suitable boundary conditions

u (x, r) = uw (x) =
u0x

l
, u (x, r) = 0, T (x, r) = Tw (x) = T0 + a

(x
l

)
,

C (x, r) = Cw (x) = C0 + d
(x
l

)
at r = R.

u (x, r)→ 0, T (x, r)→ T∞ = T0 +
bx

l
, C (x, r)→ C∞ = C0 +

ex

l
as r →∞. (8)

The above equations are made dimensionless with help of following transformations

η =

√
u0
νl

(
r2 −R2

2R

)
, ψ =

√
νu0x2

l
Rf (η) , φ (η) =

C − C∞
Cw − C0

,

u =
u0x

l
f ′ (η) , v = −

√
νu0
l

R

r
f (η) , θ (η) =

T − T∞
Tw − T0

. (9)

Here, incompressibility condition is satisfied automatically and Eqs.(5− 8) are given by

(1 + 2γη) f ′′′ + (1 + λ1)
(
ff ′′ − (f ′)

2
)

+ 2γf ′′ + βγ (f ′f ′′ − 3ff ′′′)

+β (1 + 2γη)
(
f ′′2 − ff ′′′′

)
+ ∆ (θ +Nφ) cosα−Mf ′ = 0, (10)

(1 + 2γη)

(
1 +

4

3
Rd

)
θ′′ + γ

(
2 +

4

3
Rd

)
θ′ + Pr (fθ′ − f ′θ − Sf ′ + δθ) +

PrNb (1 + 2γη)

(
θ′φ′ +

Nt

Nb
θ′2
)

= 0, (11)

(1 + 2γη)

(
φ′′ +

Nt

Nb
θ′′
)

+ 2γ

(
φ′ +

Nt

Nb
θ′
)

+ PrLe[fφ′ − f ′φ− Pf ′] = 0, (12)

f(0) = 0, f ′(0) = 1, θ (0) = 1− S, φ(0) = 1− P,

f ′(∞)→ 0, θ (∞)→ 0, φ(∞)→ 0. (13)

The dimensionless numbers appeared are defined by [14− 21]

γ =

(
νl

u0R2

) 1
2

, Pr =
µcp
k
, Le =

α

DB

, M =
σB2

o l

ρu0
,

λ =
u30z

2

2l3c2ν
, Nb =

τDB (CW − C∞)

υ
, ∆ =

gβT (TW − T∞) l2

u20x
,

Nt =
τDT (TW − T∞)

υT∞
, N =

βc (CW − C∞)

βT (TW − T∞)
, β =

u0λ2
l
,
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Rd =
4σ∗T 3

∞
kk∗

, S =
b

a
, P =

e

d
, δ =

lQ0

cpρu0
. (14)

Skin friction, local Nusselt and Sherwood numbers are

Cf =
τw

1
2
ρu2w

, Nux =
−xqw

k(Tw − T0)
, Sh =

−xjw
DB(Cw − C0)

, (15)

with

τw =
µ

1 + λ1

[
∂u

∂r
+ λ2

(
v
∂2u

∂r2
+ u

∂2u

∂x∂r

)]

r=R

,

qw = −
[(
k +

4σ∗T 3
∞

3k∗

)(
∂T

∂r

)]

r=R

, jw = −DB

(
∂C

∂r

)

r=R

. (16)

Dimensionless forms of skin friction, Nusselt and Sherwood numbers are

1

2
Cf Re1/2x =

1

1 + λ1
(f ′′(0) + β (−f(0)f ′′′(0)− γf(0)f ′′(0) + f ′(0)f ′′(0))) ,

Nux Re−1/2x = −
(

1 +
4

3
Rd

)
θ′ (0) , Shx Re−1/2x = −φ′ (0) , (17)

where Rex = u0x
2/lν is the Reynolds number.

3 Homotopic solutions

Homotopy analysis method (HAM) is betrothed to find the solution of presented modeled

problem. This renowned method was proposed by Liao [32], and is an analytical technique to

find series solutions of highly nonlinear equations [33] with ample choice for guaranteed con-

vergence of series solutions. Furthermore, unlike to Numerical methods, this method is also

applicable to problems with far field boundary conditions. Following salient characteristics

made this method alluring for researchers and scientists:

i) This method is independent of choice of large or small parameters.

ii) Convergence of series solution is guaranteed.

iii) An ample choice for the selection of base function and linear operator.

It is worth mentioning that there are some other powerful techniques like (G′/G)−expansion

method, the F−expansion method, exp−function method, the sine − cosine− method etc.

which are being used to find exact solutions of number of nonlinear PDEs arsing in engineer-

ing and physical sciences, see [34, 35] and references therein. It is an established fact that

finding exact solutions of nonlinear problems is a complicated process and hence these above

referred schemes have certain limitations. The implementation of these algorithms is subject

to the presence of dispersion term in the nonlinear PDEs, whereas, large number of nonlinear

partial differential equations do not contain such terms and hence solitary wave solutions

can not be calculated. It is to be highlighted that HAM is equally good even for such type
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of nonlinear partial differential equations. However,(G′/G)−expansion method and other

compatible techniques are highly useful for solitary wave solutions of nonlinear problems, see

[34, 35].

The initial guess estimates and linear operators necessitated for Homotopy analysis

method are given by:

f0 (η) = 1− exp (−η) , θ0 (η) = (1− S) exp (−η) , φ0 (η) = (1− P ) exp (−η) , (18)

Lf (η) =
d3f

dη3
− df

dη
, Lθ (η) =

d2θ

dη2
− θ, Lφ (η) =

d2φ

dη2
− φ. (19)

These operators possesses the underlying characteristics

Lf [A1 + A2 exp(η) + A3 exp(−η)] = 0, (20)

Lθ [A4 exp(η) + A5 exp(−η)] = 0, (21)

Lφ [A6 exp(η) + A7 exp(−η)] = 0, (22)

with Ai (i = 1− 7) are the arbitrary constants.

4 Convergence Analysis

Homotopy analysis method encompass the auxiliary parameters }f , }θ and }φ which are quite

essential to erect the desired convergent solutions. To select the appropriate values of these

parameters, }−curves are drawn to the 15th order of approximations. Fig. 1 illustrates that

the convergence regions are −0.7 ≤ }f ≤ −0.3, −0.6 ≤ }θ ≤ −0.1 and −0.6 ≤ }φ ≤ −0.2.

Table 1 depicts that 25th order of approximations are enough to form the series solutions.

Table 1 exhibits that all values are in total alignment to respective curves in Fig. 1. Which

validate graphical and numerical results.

5 Results and Discussion

It is examined that the present problem may be reduced to stretched plate by making cur-

vature parameter γ = 0. In Figs. (1 − 15), solid lines represent behavior of parameters for

cylinder i.e., γ = 0.3 and dashed lines portray case of stretched plate when γ = 0. Fig. 3

is illustrated to depict the values of Deborah number β on velocity distribution. It is wit-

nessed that velocity field is an increasing function of β. Increasing values of β escalate the

retardation time that eventually boosts the elasticity of the material which is responsible for

enhancement in velocity field. Varied values of mixed convection parameter ∆ versus velocity

field are outlined in Fig. 4. It is observed that velocity distribution is an increasing function
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of ∆. As stronger thermal buoyancy force corresponds to higher values of mixed convection

parameter which eventually increase the velocity profile. The effect of curvature parameter

γ on velocity field is depicted in Fig. 5. An increase in velocity distribution is perceived for

larger values of γ. Actually, incremented values of γ reduces the cylinder diameter means

lesser contact of fluid particles with the body of the cylinder that reduces resistance to fluid

motion. Eventually, enhanced velocity distribution is experienced. Fig. 6 reveals that veloc-

ity field is decreasing function of ratio of relaxation to retardation time λ1. Gradual increase

in the values of λ1 correspond to increasing relaxation time that offer more resistance to the

fluid motion and as a result diminishing velocity of fluid flow is observed. Fig. 7 is drawn to

depict the effects of magnetic parameter M on velocity profile. It is observed that higher val-

ues of M increase the velocity field. As enhanced magnetic field strengthen the Lorentz force

which offer resistance to the fluids motion. That is why decrease in velocity distribution

is witnessed. Increasing values of Lewis number Le lowers the nanoparticle concentration

field. This fact is shown in Fig. 8. As there is an inverse proportion between Lewis number

and Brownian diffusion coefficient. Gradual incremented values of Le lowers the Brownian

motion and a weaker nanoparticle concentration is revealed. In Fig. 9, effect of Brownian

motion parameter Nb on concentration distribution is illustrated. It is noticed that con-

centration profile is diminishing function of Nb. It is because of the fact that particles are

pushed in a direction opposite to the concentration gradient to form a more homogeneous

nanoparticle solution. Thus, smaller concentration gradient value is seen for higher values of

Nb that ultimately lowers the concentration distribution. Fig. 10 is graphed to show that

temperature field is an increasing function of thermophoresis parameter Nt. In nanofluid

flow, Nt is the gauge parameter to examine the temperature distribution. Higher values of

Nt fortify thermophoresis force that compel the nanoparticles to move to cold area from the

hot one. This phenomenon strengthen the temperature profile. From Figs. 11 and 12, it is

noticed that temperature and concentration fields are decreasing functions of thermal and so-

lutal stratification parameters S and P respectively. Actually, reduction in temperature and

concentration differences between ambient fluid and the cylinder’s surface are detected that

eventually lowers the temperature and concentration fields respectively. Fig. 13 is displayed

to present the effects of Prandtl number Pr on temperature distribution. From the figure., it

is discovered that temperature distribution is decreasing function of Pr. As there is an inverse

proportion between thermal diffusivity and Prandtl number. Thus, weak energy diffusion is

seen against higher Prandtl number values that causes a strong reduction in temperature

field. From Fig. 14, it is witnessed that temperature field is an increasing function of heat

generation/absorption parameter δ. Upsurge in fluid’s temperature is because of higher val-

ues of δ that boosts the temperature distribution. Fig. 15 portray the influence of radiation

parameter Rd on temperature distribution. From figure, it is found that temperature field is

an increasing function of Rd. More heat is transferred to the working fluid due to increase

in Rd that eventually upsurge the temperature field. From Fig. 16, it is revealed that Skin
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friction coefficient increase for higher values of Deborah number β and curvature parameter

γ. Deborah number is the fraction of relaxation time to the applied deformation. Higher

values of β directly relate to increased resistance. As smaller deformation value will boost

the relaxation time which is because of resistance in fluid motion. Similarly, higher values

of γ will upsurge resistance to the fluid and higher values of Skin friction coefficient will be

observed. Fig. 17 reflects that higher values of thermophoresis parameter Nt and Brownian

motion parameter Nb decrease the heat transfer rate at the surface because of migration of

more particles away from the surface. This effect can also be verified from the numerical

calculations displayed in Table 2. Finally, Fig. 18 is drawn to depict the effects of Lewis

number Le and Prandtl number Pr on Sherwood number. It is perceived that Sherwood

number is an increasing function of both Le and Pr. Higher values of Le relate to lower mass

diffusivity and results in thinner concentration boundary layer. Eventually, an increased

mass transfer is observed against higher concentration gradient at the wall. Similarly, higher

values of momentum diffusivity strengthen the convective mass transfer. Same effect can be

verified from the Table 2 erected numerically.

Table 2 is erected numerically for Skin friction coefficient, Local Nusselt and Sherwood

numbers. It is noticed that Skin friction coefficient is mounting function of β, M, γ, P and it

decreases for growing values of λ1. It is also found that Nusselt number increase and decrease

for escalating values of β, γ, P and M, λ1, Nb, Le respectively. Moreover, Sherwood number

is increasing function of β, γ, Nb, Le and declining function of M,λ1, P. Table 3 exhibits a

validation of obtained results by making a comparison with [36] in limiting case. Reducing

the inclined stretched cylinder to a horizontal surface and making some parameters to zero.

An excellent agreement in all results is found.

6 Final remarks

In this study we have discussed flow of magneto-Jeffrey nanofluid past a vertically stretched

cylinder under the influence of double stratification and thermal radiation. Effects of heat

generation/absorption and mixed convection are also taken into account. Jeffrey fluid is one

of the visco-elastic fluid that has numerous applications like cable coating, textile and pa-

per industry, polymer extrusion and drawing of plastic sheets etc. (see Refs.[16, 17, 19, 20]).

Similarly, magneto hydrodynamic nanofluid has a variety of daily life applications e.g., hy-

perthermia, cancer tumor treatment, wound treatment and MHD pumps and accelerators

etc. (see Ref. [37]). Salient features of this exploration are:

• Decrease in heat transfer rate is seen for increasing values of Brownian motion param-

eter Nb and thermophoresis parameter Nt.

• Temperature and concentration fields are decreasing functions of thermal and solutal

stratification parameters S and P respectively.
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• Higher values of magnetic parameter M boost the velocity field

• Skin friction coefficient increase for higher values of Deborah number β and curvature

parameter γ.

• Temperature field is growing function of radiation parameter Rd.
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Nomenclature
a, b, c, d, e Dimensional Constants S Thermal stratification parameter

B0 Magnetic field strength Shx Sherwood number

C Concentration of fluid T Temperature of fluid

Cf Skin friction Tw Wall temperature

cp Specific heat T0 Reference temperature

Cw Concentration on wall T∞ Ambient temperature

C∞ Ambient concentration uw Linear stretching velocity

C0 Reference concentration u0 Reference velocity

DB Brownian diffusion coefficient (u, v) Velocity components

DT Thermophoretic diffusion coefficient (x, y) Coordinate axis

f ′ Dimensionless velocity α Inclined angle

g Gravitational acceleration β Deborah number

Grx Grashof number βC Concentration coefficient

jw Mass flux βT Thermal expansion coefficient

k Thermal conductivity γ Curvature parameter

k∗ Rosseland mean absorption coefficient ν Kinematic viscosity

l Characteristic length ρ Density of fluid

Le Lewis number δ Heat generation/absorption parameter

M Magnetic parameter σ∗ Steffan-Boltzman constant

Nb Brownian motion parameter ∆ Thermal buoyancy parameter

Nt thermophoresis parameter λ1 Ratio of relaxation to retardation time

Nux Nusselt number λ2 Retardation time

P Solutal stratification parameter σ Electrical conductivity

Pr Prandtl number µ Coefficient of viscosity

qr Radiative heat flux τ Ratio of nanoparticle

qw Surface heat flux τw Skin friction coefficient

Q0 Heat generation/absorption coefficient η Similarity variable

R External radius θ Dimensionless temperature

r Radius φ Dimensionless concentration

Rd Thermal radiation parameter λ Porosity parameter

Rex Reynolds number ψ Stream function

Table 1. Series solutions’ convergence for varied order of approximations when M =

0.3, γ = 0.3, λ1 = 1.1, Le = 1.0, Nt = 0.7, Nb = 0.4, β = 0.1, λT = 0.1, N = 0.1, α =
π
4
, Rd = 0.4, S = 0.5, δ = 0.3, P = 0.5 and Pr = 2.0.
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Order of approximations −f ′′(0) −θ′(0) −φ′(0)

1 1.3927 0.6286 0.7075

5 1.5672 0.5992 0.6826

10 1.5715 0.5968 0.6714

15 1.5712 0.5941 0.6697

20 1.5710 0.5906 0.6795

25 1.5708 0.5878 0.6794

30 1.5708 0.5878 0.6794

Table 2. Numerical values of skin friction coefficient,Nusselt and Sherwood numbers for

different parameters when ∆ = Q = 0.1, α = π
4
, Rd = 0.4, S = 0.5, δ = 0.3, Nt = 0.7,Pr = 1.

β M λ1 γ P Nb Le Cf Re1/2x Nux Re−1/2x Shx Re−1/2x

0.1 0.3 1.1 0.2 0.5 0.4 1.0 0.8040 0.9021 0.6218

0.1 0.8040 0.9021 0.6218

0.2 0.8407 0.9314 0.6340

0.3 0.8760 0.9514 0.6474

0.1 0.7714 0.9358 0.6401

0.2 0.7877 0.9208 0.6301

0.3 0.8040 0.9021 0.6218

0.7 0.9139 1.0015 0.6531

0.9 0.8537 0.9302 0.6345

1.1 0.8040 0.9021 0.6218

0.1 0.7852 0.8974 0.5728

0.2 0.8040 0.9021 0.6218

0.3 0.8227 0.9083 0.6698

0.3 0.8038 0.8841 0.7515

0.4 0.8039 0.8890 0.6867

0.5 0.8040 0.9021 0.6218

0.2 - 0.9781 0.0924

0.3 - 0.9412 0.3849

0.4 - 0.9021 0.6218

0.6 - 0.9461 0.1500

0.8 - 0.9231 0.4020

1.0 - 0.9021 0.6218

Table 3: A comparison of numerical values of skin friction coefficient Cf Re1/2x for dif-

ferent values of λ1, M , β, and ∆ when Pr = Le = 0.1, N = 0.3, Nt = Nb = 0.2, Rd =
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0.4, S = P = 0.2, γ = α = δ = 0.

λ1 M β ∆ Present [36]

0.1 0.7 0.2 0.3 1.11097 1.11097

0.4 0.7 0.2 0.3 0.97340 0.97340

0.7 0.7 0.2 0.3 0.87539 0.87539

0.3 0.0 0.2 0.3 0.79447 0.79447

0.3 0.5 0.2 0.3 0.91104 0.91104

0.3 1.0 0.2 0.3 1.20901 1.20901

0.3 0.7 0.0 0.3 0.91586 0.91586

0.3 0.7 0.3 0.3 1.05963 1.05963

0.3 0.7 0.5 0.3 1.14651 1.14651

0.3 0.7 0.2 0.0 1.17277 1.17277

0.3 0.7 0.2 0.5 0.91683 0.91683

0.3 0.7 0.2 1.0 0.69008 0.69008

6.1 Figure Captions
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Figure 2: }− curves

Γ = 0.3, Λ1 = 1.1, D = 0.1, Q = 0.1, Α = Π � 4,

M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

Β = 0.1, 0.5, 1.0, 1.5

2 4 6 8
Η

0.2

0.4

0.6

0.8

1.0

f 'HΗL

Figure 3: f ′(η) for varied values of β

Γ = 0.3, Λ1 = 1.1, Β = 0.1, Q = 0.1, Α = Π � 4,

M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

D = 0.1, 0.7, 1.4, 2.0

1 2 3 4 5 6 7
Η

0.2

0.4

0.6

0.8

1.0

f 'HΗL

Figure 4: f ′(η) for varied values of ∆
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Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1, Α = Π � 4,

M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

Γ = 0.1, 0.3, 0.5, 0.9

2 4 6 8
Η

0.2

0.4

0.6

0.8

1.0

f 'HΗL

Figure 5: f ′(η) for varied values of γ

Γ = 0.3, Β = 0.1, D = 0.1, Q = 0.1, Α = Π � 4,

M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

Λ1 = 0.1, 0.3, 0.6, 1.0

2 4 6 8
Η

0.2

0.4
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0.8

1.0

f 'HΗL

Figure 6: f ′(η) for varied values of λ1

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

M = 0.1, 0.6, 1.2, 1.8
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Figure 7: f ′(η) for varied values of M

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, P = 0.5

Le = 0.4, 0.5, 0.6, 0.7

2 4 6 8
Η

0.1

0.2

0.3

0.4

0.5

ΦHΗL

Figure 8: φ(η) for varied values of Le
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Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nt = 0.7, Le = 1.0, P = 0.5

Nb = 0.4, 0.5, 0.7, 1.0

2 4 6 8
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0.1

0.2

0.3

0.4

0.5

ΦHΗL

Figure 9: φ(η) for varied values of Nb

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Le = 1.0, P = 0.5

Nt = 0.1, 0.5, 1.0, 1.5

2 4 6 8
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Figure 10: θ(η) for varied values of Nt

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, Pr = 2.0,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

S = 0.1, 0.2, 0.3, 0.4
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Figure 11: θ(η) for varied values of S

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0

P = 0.0, 0.2, 0.4, 0.6
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Figure 12: φ(η) for varied values of P
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Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

Pr = 0.1, 0.3, 0.5, 0.7
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Figure 13: θ(η) for varied values of Pr

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

∆ = 0.1, 0.3, 0.5, 0.7
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Figure 14: θ(η) for varied values of δ

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0, P = 0.5

Rd = 0.0, 0.3, 0.6, 1.0
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Figure 15: θ(η) for varied values of Rd

Γ = 0.2, 0.4, 0.6, 0.8

Λ1 = 1.1, D = 0.1, Q = 0.1, Α = Π � 4, P = 0.5

M = 0.3, Rd = 0.4, Pr = 2.0, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, Le = 1.0,
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Figure 16: Cf Re1/2x for varied values of γ and β
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Nt = 0.1, 0.4, 0.7, 1.0

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,
Α = Π � 4, M = 0.3, Pr = 2.0, S = 0.5,
∆ = 0.3, Le = 1.0, P = 0.5
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Figure 17: Nux Re−1/2x for varied values of Nt, Nb

Le = 1, 2, 3, 4

Γ = 0.3, Λ1 = 1.1, Β = 0.1, D = 0.1, Q = 0.1,

Α = Π � 4, M = 0.3, Rd = 0.4, S = 0.5,

∆ = 0.3, Nb = 0.4, Nt = 0.7, P = 0.5
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Figure 18: Shx Re−1/2x for varied values of Le, Pr
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