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Abstract: This study examines the effect of Cattaneo Christov heat flux with

heat generation/absorption on three dimensional Maxwell fluid flow past a bidirec-

tional stretched surface in the presence of magnetohydrodynamic (MHD. The effects of

homogeneous−heterogeneous reactions with convective boundary condition are also taken

into account. Analytical solution of nonlinear differential equations is obtained by employing

Homotopy Analysis method. Graphical illustrations displaying effects of sundry parame-

ters with required discussion highlighting their physical impact are also a part of this ex-

ploration. It is perceived that velocity distributions are decreasing functions of Hartmann

number. Moreover, increasing values of measure of homogeneous reaction parameter reduces

concentration distribution.

Keywords: Homogenous-Heterogeneous reactions; Magnetic field; Cattaneo-Christov

heat flux model; Convective boundary condition; Heat generation/absorption.

1 Introduction

Heat transfer analysis is a subject of great interest for scientists and researches due to its

viability in numerous industrial and engineering applications like electronic devices, nuclear

reactors’ cooling, power generation, and heat conduction in tissues etc. Pioneering work by

1Corresponding Author’s email address: mramzan@bahria.edu.pk
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Fourier [1] regarding heat transfer process is considered to be the most effective model due to

its applicability in varied circumstances. Cattaneo [2] addressed the flaw in Fourier’s model

by inserting the time relaxation term to get rid of inconsistency in heat conduction, named

as “Paradox of heat conduction”. Christov [3] improved Cattaneo’s model by considering

Oldroyd’s upper-convected derivative for ordinary derivative. The uniqueness of the solution

using Cattaneo-Christov model for incompressible fluid was proved by Tibullo and Zampoli

[4]. Han et al. [5] discussed upper-convected Maxwell fluid flow with slip condition in atten-

dance of Cattaneo-Christov heat flux. Recently, researchers and scientists have shown great

interest in exploring new avenues regarding Cattaneo-Christov heat flux model [6− 10].

The study of flows with effects of magnetohydrodynamic (MHD) are imperative due to its

wide range applications like gas turbine, solar power, plasma studies, nuclear power plants and

in magnetic resonance imaging (MRI) etc. Precisely, MHD flows with convective boundary

conditions have special importance in many engineering applications like thermal energy

storage, processes involving high temperatures, and space vehicle re-entry etc. Ibrahim and

Haq [11] studied the flow of nanofluid under the effects of convective boundary condition and

magnetohydrodynamic past a stretching surface. Ramzan et al. [12] examined micropolar

fluid flow with MHD, joule heating in addition to convective boundary condition and thermal

radiation effects. A similar study was carried out by Waqas et al. [13] considering MHD

mixed convective micropolar fluid flow with convective boundary condition past a nonlinear

stretched surface. Hussain et al. [14] found analytical solution of MHD Casson nanofluid flow

with convective boundary conditions and viscous dissipation. Mabood et al. [15] explored

effects of MHD and convective boundary condition on stagnation point nanoparticle flow with

suction/injection. Recent attempts highlighting magnetohydrodynamics effects with varied

features may include [16− 26].

In numerous engineering and technological applications, importance of non-Newtonian

fluids cannot be negated. Examples of these materials may include shampoos, mayonnaise,

blood, paints, alcoholic beverages, yogurt, cosmetics, and syrups etc. Mathematical modelling

of these fluids is very tedious as typical Navier-Stokes equations are not enough to express

characteristics of non-Newtonian fluids. These fluids are categories as differential, rate and
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integral types. Maxwell fluid fall in the category of rate type fluids and is used to describe

features of relaxation time.

The present exploration describes the impact homogeneous-heterogeneous reactions on

three dimensional MHD Maxwell fluid flow with Cattaneo-Christov heat flux past a bidirec-

tional stretched surface. Here, in this paper the novelty is twofold:

i) Combined effects of homogeneous-heterogeneous reactions on 3D flow of Maxwell

fluid with Cattaneo-Christov heat flux are being presented first time.

ii) Variable temperature dependent thermal conductivity for three dimensional

Cattaneo-Christov heat flux model with MHD and convective boundary condition are also

considered.

Series solutions for involved distributions are acquired using Homotopy Analysis method

(HAM) [27 − 29]. Graphical illustrations highlighting varied prominent parameters’ effects

with their physical importance are also given.

2 Mathematical formulation

Consider 3D flow of MHD Maxwell fluid with Cattaneo-Christov heat flux and homogeneous-

heterogeneous reactions past a bidirectional stretched surface. The fluid occupies the region

z ≥ 0 whereas u = ax and v = by are stretching velocities in x and y directions respectively

as shown in fig. 1. Temperature at the surface Tw is greater than the temperature far-off from

the surface T∞. Presence of uniform magnetic field makes the fluid electrically conducting.

However, induced magnetic field is ignored due to our supposition of small Reynolds number.

The homogeneous and heterogeneous reactions taken on boundary layer flow and on the

catalyst surface respectively are represented by

A+ 2B → 3B, rate = kcab
2, (1)

and

A→ B, rate = ksa. (2)

3
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Here, chemical species A and B have concentrations a and b with rate constants kc

and ks respectively. It is assumed that there is no variation in the temperature for the both

under consideration reactions. Governing equations of the existing flow under all assumptions

discussed above are given by [30, 31]

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3)

u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
+ λ1

 u2 ∂
2u
∂x2

+ v2 ∂
2u
∂y2

+ w2 ∂2u
∂z2

+

2uv ∂2u
∂x∂y

+ 2vw ∂2u
∂y∂z

+ 2uw ∂2u
∂x∂z

 = ν
∂2u

∂z2
− σB2

o

ρ

(
u+ λ1w

∂u

∂z

)
,

(4)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ λ1

 u2 ∂
2v
∂x2

+ v2 ∂
2v
∂y2

+ w2 ∂2v
∂z2

+

2uv ∂2v
∂x∂y

+ 2vw ∂2v
∂y∂z

+ 2uw ∂2v
∂x∂z

 = ν
∂2v

∂z2
− σB2

o

ρ

(
v + λ1w

∂v

∂z

)
,

(5)

ρCPV.∇T = −∇.q, (6)

u
∂a

∂x
+ v

∂a

∂y
+ w

∂a

∂z
= DA

∂2a

∂z2
− kcab2,

u
∂b

∂x
+ v

∂b

∂y
+ w

∂b

∂w
= DB

∂2b

∂z2
+ kcab

2, (7)

where ν, σ, B0, T, Cp, ρ, v, λ1 , DA and DB, kc and ks, q and (u, v) are kinematic

viscosity, electrical conductivity, uniform magnetic field, temperature, specific heat, fluid

density, kinematic viscosity, relaxation time, diffusion coefficients, rate constants, heat flux

and velocities along (x, y) directions respectively. The heat flux q satisfy the following relation

q + λ2

(
∂q

∂t
+ V.∇q− q.∇V + (∇.V) q

)
= −k∇T, (8)

with k and λ2 are fluid thermal conductivity and thermal relaxation time. Eliminating q

from Eqs. (6) and (8) by taking into account [3],we get

u
∂T

∂x
+ v

∂T

∂y
+ +w

∂T

∂z
=

1

ρCP

∂

∂z

(
k
∂T

∂z

)
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−λ2


u2 ∂

2T
∂x2

+ v2 ∂
2T
∂y2

+ w2 ∂2T
∂z2

+ 2uv ∂2T
∂x∂y

+2vw ∂2T
∂y∂z

+ 2uw ∂2T
∂x∂z

+
(
u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

)
∂T
∂x

+(
u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

)
∂T
∂y

+
(
u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

)
∂T
∂z

+
Q

ρCP
(T − T∞) . (9)

The problem supporting boundary conditions are given by

u = cx, v = by, w = 0 − kh
∂T

∂z
= hf (Tw − T ) ,

DA
∂a

∂z
= ksa, DB

∂b

∂z
= −ksa, at z = 0,

u→ 0, v → 0, a→ ao, b→ 0, T → T∞ as z →∞. (10)

where hf , kh and c, b, a, a0 are heat transfer coefficient, thermal conductivity of the fluid and

positive dimensional constants.

Assuming the following transformations and using the variable thermal conductivity [30]

in Eq. (9)

u = cxf ′ (η) , v = cyg′ (η) , w = −
√
cν (f (η) + g (η)) , k = k∞ (1 + εθ)

θ (η) =
T − T∞
Tw − T∞

, η =

√
c

ν
y, b = a0h (η) , a = a0φ (η) . (11)

Eq. (3) is automatically satisfied, however Eqs. (4), (5), (7), (9) and (10) take the form

f ′′′+K1

(
2 (f + g) f ′f ′′ − (f + g)2 f ′′′

)
+(f + g) f ′′−f ′2−M2 (f ′ −K1 (f + g) f ′′) = 0, (12)

g′′′+K1

(
2 (f + g) g′g′′ − (f + g)2 g′′′

)
+ (f + g) g′′− g′2−M2 (g′ −K1 (f + g) g′′) = 0, (13)

(1 + εθ) θ′′+ εθ′2 + Pr (f + g) θ′−PrK2

(
(f + g)2 θ′′ + (f + g) (f ′ + g′) θ′

)
+ PrSθ = 0, (14)

φ′′ + Sc (f + g)φ′ − ScK3φh
2 = 0, (15)

δh′′ + Sc (f + g)h′ + ScK3φh
2 = 0, (16)
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f(0) = 0, f ′(0) = 1, g(0) = 0, g′(0) = λ, φ′ (0) = γ2 φ (0) ,

θ′ (0) = −γ1 (1− θ (0)) , δh′ (0) = γ2 φ (0) at y = 0, (17)

f ′(∞) → 0, g (∞)→ 1, h (∞)→ 1, φ (∞)→ 1, θ (∞)→ 0, as y →∞,

where Pr, K1, ε, M, λ, Sc, γ2, K3, K2, S, δ and γ1 are the Prandtl number, Deborah

number with respect to relaxation time, thermal conductivity parameter, Hartmann number,

ratio of stretching rates, Schmidt number, measure of the strength of the heterogeneous

reaction, measure of strength of homogenous reaction, Deborah number with respect to

relaxation time of heat flux, heat generation parameter, ratio of diffusion coefficient and Biot

number respectively . The values of these parameters are given below:

Pr =
µCp
k
, K1 = λ1c , K2 = λ2c, S =

Q

ρcCp
, K3 =

kca
2
0

a
, δ =

DB

DA

,

γ1 =
hf
k

√
ν

c
, M =

σB2
o

cρ
, Sc =

ν

DA

, γ2 =
k

DAa0

√
c

ν
, λ =

b

c
, ε =

kw − k∞
k∞

. (18)

Considering that the diffusion coefficients of chemical species A and B are comparable in

size, it leads us to assume DA and DB are also same. i.e. δ = 1. So, we have

φ (η) + h (η) = 1. (19)

Thus, Eqs. (15) and (16) take the form

φ′′ + Sc (f + g)φ′ − Scγ1φ (1− φ)2 = 0, (20)

with allied boundary conditions

φ′(0) = γ2φ(0), φ(∞) = 1. (21)

Skin friction coefficients and local Nusselt number are represented by

Cfx =
τwx

ρu2w(x)
, Cfy =

τwy
ρu2w(y)

, Nux =
xqw

k(Tw − T∞)
, (22)
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where τwx, τwy and qw are given by:

τwx = µ (1 +K1)

(
∂u

∂z

)
z=0

, τwy = µ (1 +K1)

(
∂v

∂z

)
z=0

,

qw = −k
(
∂T

∂z

)
z=0

. (23)

Dimensionless forms of Eq.(23) are as under

CfxRe
1/2
x = (1 +K1) f

′′ (0) , CfyRe
1/2
x = (1 +K1) g

′′ (0) , NuxRe
−1/2
x = −θ′ (0) . (24)

3 Homotopic solutions

The selection of initial guess estimates (f0, g0, θ0, φ0) with respective operators (Lf ,Lg,Lθ,Lφ)

is main to Homotopy Analysis method

f0 (η) = (1− exp (−η)) , g0 (η) = λ(1− exp (−η)),

θ0 (η) =
γ1 exp (−η)

1 + γ1
, φ0 (η) = 1− 1

2
exp (−γ2η) , (25)

and

Lf (η) =
d3f

dη3
− df

dη
, Lg (η) =

d3g

dη3
− dg

dη
, Lθ (η) =

d2θ

dη2
− θ, Lφ (η) =

d2φ

dη2
− φ. (26)

Properties of these operators are appended below

Lf [C1 + C2 exp(η) + C3 exp(−η)] = 0,

Lg [C4 + C5 exp(η) + C6 exp(−η)] = 0,

Lθ [C7 exp(η) + C8 exp(−η)] = 0,

Lφ [C9 exp(η) + C10 exp(−η)] = 0, (27)

where Ci (i = 1− 10) are the arbitrary constants. These constants through boundary con-

7
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ditions have the following values

C2 = C5 = C7 = C9 = 0, C3 =
∂f ?m (η)

∂η

∣∣∣∣
η=0

,

C1 = −C3 − f ?m (0) , C6 =
∂g?m (η)

∂η

∣∣∣∣
η=0

,

C4 = −C6 − g?m (0) , C8 =
1

1 + γ1

(
∂θ∗m (η)

∂η

∣∣∣∣
η=0

− γ1θ∗m (0)

)
,

C10 =
1

1 + γ2

(
∂φ∗m (η)

∂η

∣∣∣∣
η=0

− γ2φ∗m (0)

)
. (28)

3.1 Convergence analysis

The auxiliary parameters play a vital role to establish the region of convergence for the

series solutions. To define the same region, }-curves are illustrated in Fig. 2. Acceptable

ranges of these parameters }f , }g, }θ and }φ as displayed in figure are −2.0 ≤ }f ≤ −0.5,

−2.0 ≤ }g ≤ −0.4, − 2.1 ≤ }θ ≤ −0.5 and −2.0 ≤ }φ ≤ −0.3. Table 1. depicts the

convergence ranges of these parameters to 35th order of approximations, and all ranges are

found in an excellent agreement to those portrayed in Fig. 2.

Table 1. Convergence of series solutions for varied order of approximations when M =

0.4, Pr = 2.0, γ1 = 0.2, γ2 = 0.4, Sc = 0.7, Sc = 0.2, K1 = 0.2, K2 = 0.3, K3 = 0.3, λ =

0.3, ε = 0.2.
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Order of approximations −f ′′(0) −g′′(0) −θ′(0) φ′ (0)

1 1.11907 0.27776 0.16619 0.19383

5 1.18870 0.28067 0.17327 0.18957

10 1.19875 0.28405 0.17576 0.18972

15 1.20153 0.28541 0.17530 0.19041

20 1.20275 0.28608 0.17469 0.19110

25 1.20341 0.28647 0.17442 0.19173

30 1.20365 0.28660 0.17430 0.19180

35 1.20368 0.28666 0.17428 0.19181

40 1.20368 0.28666 0.17428 0.19181

4 Results and Discussion

This section demonstrates the flow behavior of various arising parameters on velocity, tem-

perature and concentration profiles. The case of viscous fluid may be extracted from Maxwell

fluid model by considering Deborah number K1 equal to zero. Effects of K1 on the velocity

and temperature profiles are shown in Figs. (3 − 5). As Deborah number has a direct

proportion to relaxation time, so higher values of relaxation time boosts Deborah number

which resist fluid flow. That is why a reduction in velocity profiles is observed for higher

values of Deborah number (Figs. 3 & 4). From Fig. 5, it is observed that temperature

profile is snowballing function of Deborah number. It is an accepted truth that an increase

in temperature profile and its associated boundary layer thickness is seen for higher Deborah

number. Figs. 6 and 7 are drawn to portray the effects of Hartmann number M on both

velocity distributions along x and y−directions. Decrease in both velocities is observed due

to the resistance offered by Lorentz force. However, this resistive Lorentz force causes an

enhancement in the temperature distribution (see Fig. 8). From Fig. 9, it is witnessed that

higher values of heat generation/absorption parameter S cause an increase in temperature

distribution. Actually, more heat is immersed by the fluid when we increase S. The impact

of relaxation time of heat flux K2 on temperature distribution is analyzed in Fig. 10. For

9
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increasing values of relaxation time for heat flux, decreasing temperature profile is witnessed.

From Fig. it is observed that temperature distribution turned out to be sharper in neigh-

borhood of the boundary as K2 mounted which is a sign of the development in wall slope of

temperature field. Fig. 11 shows that concentration distribution and its associated solutal

boundary layer thickness decrease for increasing values of ”measure of homogeneous reaction

parameter K3”. Since the reactants are utilized during homogeneous reaction that is why

reduction in concentration profile is observed. Effect of “strength of heterogeneous reaction

parameter γ2 on concentration distribution is shown in Fig. 12. It is witnessed that for higher

values of γ2, diffusion decreases, and for the particles with low diffusion characteristics, con-

centration will be increased. Fig. 13 portrays the influence of ratio of stretching constant

λ on concentration distribution. Here, concentration profile is an increasing function of λ.

An increase in λ results in stretching of the sheet along y−axis, which ultimately boost the

concentration of the fluid. In Fig. 14, impact of Prandtl number Pr on temperature field is

displayed. Increasing values of Pr decrease fluid’s thermal diffusivity which eventually lowers

the temperature of the fluid. Fig. 15 demonstrates the influence of Biot number γ1 on tem-

perature profile, which shows that temperature is growing function of γ1. Increasing values

of γ1 are due to larger heat transfer resistance inside a body as compared to surface. Which

results in high temperature of the fluid. Fig. 16 represents the impact of Schmidt number

Sc on concentration distribution. It can be seen that concentration distribution is mount-

ing function of Sc. As Schmidt number is referred as the quotient of momentum diffusivity

to mass diffusivity. Therefore, high momentum diffusivity as compared to mass diffusivity

boosts the Sc. Which ultimately increase the concentration of the fluid. The variation of

thermal conductivity parameter ε on temperature distribution is illustrated in Fig. 17. It is

known fact that higher thermal conductivity boosts the thermal boundary layer. The effect

is reflected in Fig.17. Effects of Deborah number with respect to relaxation time K1 and

Hartmann number M on Skin friction coefficient are portrayed in Fig. 18. It is perceived

that Skin friction coefficient is an increasing function of both K1 and M . Similarly, local

Nusselt number also increases for higher values of Prandtl number Pr and Deborah number

K1 with respect to relaxation time of heat flux K2 (Fig. 19).

10
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Table 2 depicts local Nusselt number in the absence of MHD, Cattaneo Christov heat flux,

heat generation/absorption and homogeneous heterogeneous reactions for different values of

various parameters. It is observed that all obtained values of local Nusselt number are in an

excellent agreement with the values found in Hayat et al. [32].

Table 2. Values of local Nusselt number −θ′ (0) in the absence of MHD, Cattaneo Christov

heat flux, heat generation/absorption and homogeneous heterogeneous for the varied values

of the parameters reactions K1, and Pr when γ1 = 0.6.

K1 λ Pr [32] Present

0.0 0.5 1.0 0.33040 0.33040

0.3 0.32160 0.32160

0.8 0.30799 0.30799

1.2 0.29873 0.29873

0.4 0.0 0.28908 0.28908

0.4 0.31664 0.31664

0.7 0.33017 0.33017

1.0 0.34070 0.34070

0.7 0.28279 0.28279

1.2 0.34042 0.34042

1.6 0.36840 0.36840

2.0 0.38887 0.38887

5 Concluding Remarks

Present exploration examines the homogeneous heterogeneous reactions on three dimensional

Maxwell fluid flow past a bidirectional stretched surface, with magnetohydrodynamic and

heat generation/absorption. Effects of Cattaneo Christov heat flux with convective bound-

ary condition are also considered. Homotopy Analysis method is engaged to find solve the

modeled problem. Significant findings of the problem are:

• Reduction in velocity distributions is witnessed for higher values of Deborah number.
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• Velocity distributions are decreasing functions of Hartmann number.

• Increasing values of measure of homogeneous reaction parameter reduces concentration

distribution.

• Temperature field is growing function Biot number.

• Heat generation/absorption parameter causes an increase in temperature distribution.
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Fig. 1: Flow diagram

Fig. 2: }-curves for function f, g, θ and φ

Fig. 3: Effect of K1 on f ′ (η)
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Fig. 4: Effect of K1 on g′ (η)

Fig. 5: Effect of K1 on θ (η)

Fig. 6: Effect of M on f ′ (η)
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Fig. 7: Effect of M on g′ (η)

Fig. 8: Effect of M on θ (η)

Fig. 9: Effect of S on θ (η)
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Fig. 10: Effect of K2 on θ (η)

Fig. 11: Effect of K3 on φ (η)

Fig. 12: Effect of γ2 on φ (η)
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Fig. 13: Effect of λ on φ (η)

Fig. 14: Effect of Pr on θ (η)

Fig. 15: Effect of γ1 on θ (η)
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Fig. 16: Effect of Sc on φ (η)

Fig. 17: Influence of ε on θ (η)

Fig. 18: Effects of M and K1 on Skin friction
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Fig. 19: Effects of Pr and K2 on Nusselt number
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Highlights

• Flow of 3D Maxwell fluid with Homogeneous and heterogeneous reactions is studied.

• Effects of 3D Cattaneo-Christov heat flux are also considered.

• Analytical solution is obtained using Homotopy Analysis method.

• Temperature field is growing function Biot number.

• Heat generation/absorption parameter causes an increase in temperature field.
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