

FINAL YAER PROJECT REPORT

REMOTE HEALTH MONITORING SYSTEM (RHMS)

By

Hanniya Aijaz	35541	BCE
Samiya Mehmood	35535	BCE

Project Advisor Dr. Osama Rehman

Deliverable Report 2 Volume

Bahria University (Karachi Campus)

ACKNOWLEDGEMENT

There is no boundary to thank *Allah* (SWT) for His endless blessing upon us that we got opportunity to complete our FYP project report on time for university undergraduate program. However, there are lots of people who encourage and helped us in completing our report under given report format.

Firstly, we would like to thank our parents who encourage us throughout our degree program as their appreciation, love and cooperation was our biggest achievement that we have completed our report. Next we would like to thanks deeply to our supervisor *Osama Rehman* under whose constant supervision, guidance, understanding, time and information related to project was our great support in a completion of our report. We would also like to express our special thanks to *Ma'am Nabiha Faisal* as she was our great supporter, listener and encourager as she was always there to guide us on right path throughout our degree program. Last but not the least, we our highly indebted to our institute *Bahria University Karachi Campus* who provide us with such cooperative teachers, labs, equipment and support that we achieved our goals.

ABSTRACT

Precision and timeliness of the information collected relating to patients still remain as open challenges in current health systems, especially for cases relating to monitoring of patients with chronic diseases and severe health conditions. As a consequence, there is a need for improving quality of the gathered information which in-turn can largely improve the decisions made by medical professionals. Continuous observation of patients can allude towards predicting their future conditions (physiological and physical), help to reduce the health care cost while simultaneously improving patient care outcomes. This can be customarily performed through the usage of one or more sensors attached to the patient's body. Indeed, critical decisions made by the medical staff can largely depend on the gathered information originating from such sensors. For that, this work proposes the design of an automated Remote Health Monitoring System (RHMS) aimed towards indoor patients, such as for those present inside the hospitals. The proposed system has the potential to provide medical personals with the ability to continuously monitor the patients through a centralized observation system without being physically present at their bedsides. In this project we have investigate the issues of information quality, in-terms of precision and timeliness, hence providing essential research pieces and motivation particles about this subject.

Keywords: Remote Health Monitoring, Lilypad Arduino, Hospital System, Patient Monitoring, Health.

Table of Contents

Chapter 1	- INTRODUCTION	l
1.1 Purp	ose of the Project	1
1.1 Purpos	e, Aim and Objectives of Project	2
1.2	Overview of this Document	3
1.3	Existing System	3
1.3.1	Existing System Description	4
1.3.2	Problems in the Existing System	5
Chapter 2	- SYSTEM ANALYSIS	6
2.1 DATA	ANALYSIS	6
2.1.1 Wo	ork Breakdown Structure	6
2.1.1 Da	ta Flow Diagram	7
2.1.2 Sys	stem Requirements	7
2.1.2.1	User Requirement	7
2.1.2.2	Functional and Data Requirements	9
2.1.2.2	2.1 Selection of Arduino Board	10
2.1.2.2	2.2 Sensor Connectivity Pins with Arduino	10
2.1.2.3	3 Non-Functional Requirements	. 11
2.1.2.3	3.1 Look and Feel Requirements	.11
2.1.2.3	3.2 Usability Requirements	. 12
2.1.2.3	3.3 Security Requirements	. 12
2.1.2.4	Proposed Solutions	. 12
2.1.2.5	S Alternative Solution	.13
Chapter 3	- DESIGN CONSIDERATIONS	. 14
3.1 Desig	gn Constraints	. 14
3.1.1 F	Hardware and Software Environment	. 14
3.1.21	End User Characteristics	. 15
3.2 Arch	itectural Strategies	. 16
3.2.1 A	Algorithm to be used	. 16
3.2.1.1 F	low Chart	. 18
3.2.2 F	Reuse of Existing Software Components	. 19
3.2.3 F	Project Management Strategies	. 19
3.2.3.1	Gantt chart	.21
	Development Method	
	ect Test Documentation (PTD)	
	Case Study	

C	ase 1	.22
C	ase 2:	23
3.	3.2 Case Studies Purpose	23
P	urpose One	23
P	urpose Two	24
Chapt	er 4 – SYSTEM DESIGN	25
4.1 5	System Architecture and Program Flow	25
4.	1.1 Architecture for Current RHMS system	25
4.	1.2 Architecture for Future work	26
4.	1.1 Major Modules	26
4.	1.2 Sub Modules	28
4.2]	Detailed System Design	30
4.	2.1 Detailed component description	30
a.	Lilypad Arduino	30
F	TDI Connector	31
P	ulse Sensor Amped	31
L	M35	32
Chapt	er 5 – IMPLEMENTATION AND VALIDATION	33
5.1	Initial Setup Requirement	.33
5.2 1	Database Creation	.33
5.3	Admin Login Form	35
5.	3.1 Option for Selection of Information	35
5.4 1	Doctor Login	.37
5.5 Re	sults	.39
5.6	Testing	.43
Chapt	er 6 – CONCLUSION	.46
	er 7 FUTURE WORK	
Appen	dix A: Programming Source Code	.48
	INO IDE CODE 1	
	nterrupt Call Code	
	T END AND BACK END APPLICATION CODE	
a.	Connection with database Code	
b.	Admin Login Form	
c.	Patient Entry Form Code	
d.	Doctor Home Page	
e.	Save Selected ID data for Graphic View	
f.	Display Patient List	
g.	Graph	
		THE RES

Code 1: Backend JavaScript Code	66
CODE 2: Front End HTML Code	67
REFERENCES	69
Conference Paper	69
Web Based	69